Modeling on Ratio-Dependent Three-Trophic Population Dynamics Responding to Environmental Impacts

외부 환경영향에 대한 밀도비 의존 3영양단계의 개체군 동태 모델

  • Lee, Sang-Hee (Department of Physics, Pusan National University) ;
  • Choi, Kyung-Hee (Division of Biological Sciences, Pusan National University) ;
  • Chon, Tae-Soo (Division of Biological Sciences, Pusan National University)
  • Published : 2004.09.30

Abstract

The transient dynamics of three-trophic populations (prey, predator, and super predator) using ratio-dependent models responding to environmental impacts is analyzed. Environmental factors were divided into two parts: periodic factor (e.g., temperature) and general noise. Periodic factor was addressed as a frequency and bias, while general noise was expressed as a Gaussian distribution. Temperature bias ${\varepsilon}$, temperature frequency ${\Omega}$, and Gaussian noise amplitude ${\`{O}}$ accordingly revealed diverse status of population dynamics in three-trophic food chain, including extinction of species. The model showed stable limit cycles and strange attractors in the long-time behavior depending upon various values of the parameters. The dynamic behavior of the system appeared to be sensitive to changes in environmental input. The parameters of environmental input play an important role in determining extinction time of super predator and predator populations.

수 생태계 내에서 흔히 볼 수 있는 3영양단계 먹이사슬 구조를 이루는 종들이 밀도비 의존 모델로써 구현 될 때 외부 환경에 대해서 어떻게 반응하는지를 연구하였다. 환경 요인은 주기적 요인과 일반적 노이즈 두 부분으로 나누었다. 주기적 요인이 온도로써 대표되었을 때 온도변이를 바이어스와 주기로 나누었고, 기타 복합적인 노이즈는 가우스 분포로 나타내었다. 온도변이 바이어스 ${\varepsilon}$, 온도주기 ${\Omega}$, 및 가우스 노이즈 크기 ${\'{O}}$가 서로 결합하여 3영양단계 먹이사슬에서 개체군 멸절을 포함한 다양한 개체군 동태를 보여 주었다. 변수의 적절한 값에 따라 '안정된 제한 사이클'이나 '이상한 끌개'를 보여 주었으며, 전체적으로 개체군 동태는 환경 변수에 따라 민감하게 반응하였고, 포식자 및 최상위포식자 개체군의 멸절시간이 조절되었다.

Keywords

References

  1. Arditi, R. and L.R. Ginzburg. 1989. Coupling in predatorprey dynamics: ratio-dependent. J. Theor. Biol. 139: 311-326
  2. Arditi, R., J.M. Abillon and J.V. DaSilva. 1978. A predator- prey model with satiation and intraspecific competition. Ecol. Model. 5: 173-191
  3. Bazykin, A.D. 1998. Nonlinear dynamics of interacting populations. WorldScientific, Singapore. Berryman, A.A. 1991. The biological control paradox. Trends Ecol. Evol. 6: 32
  4. Freund, J.A. and T. Poschel (Eds.). 2000. Stochastic processes in physics, chemistry, and biology, Lecture Notes in Physics, Vol. 557, Springer, Berlin. Gakkhar, S. and R.K. Naji. 2002. Chaos in three species ratio-dependent food chain. Chaos, Solitons and Fractals 14: 771-778
  5. Gonzalez-Gascon, F. and D. Peralta Salas. 2000. On the first integrals of lotka?volterra systems, Physics Letters A 266: 336-340
  6. Gutierrez, A.P. 1992. Physiological basis of ratio-dependent predator-prey theory: the metabolic pool model as a paradigm. Ecology 73: 1552-1563
  7. Ellner, E. McCauley, R.M. Nisbet and S.N. Wood. 1999. Why do population cycle? A synthesis of statistical and mechanistic modeling approaches. Ecology 80: 1789-1805
  8. Klebabnoff, A. and A. Hastings. 1993. Chaos in three species food chains. J. Math. Biol. 32: 427-451
  9. La Barbera, A. and B. Spagnolo. 2002. Spatio-temporal patterns in population dynamics. Physica A, 120-124
  10. Leslie, P.H. 1948. Some furthers notes on the use of matrices in population mathematics. Biometrica 35: 213-45
  11. Wildhaber, M.L. 2001. The trade-off between food and temperature in the habitat choice of bluegill sunfish. J. Fish Biol. 58: 1476-1478
  12. Zlatinka, I.D. and K.V. Nikolay. 2000. Influence of adaptation on the nonlinear dynamics of a system of competing populations. Physics Letters A 272: 368-380