참고문헌
- Gann v.59 Antitumor activity of some basidiomycetes. especially Phellinus linteus. Ikekawa, T.; Nakanish, M.; Uehara, N.; Chihara, G.; Fukuoka, E.
- Food Rev. Int. v.11 Agaricus blazei Murill: medicinal and dietry effects. Mizuno, T.; Kawariharatake https://doi.org/10.1080/87559129509541026
- Kor. J. Food Sci. Technol. v.32 In vitro and in vivo antitumor activity of the fruit body of Phellinus linteus. Lee, K.Y.; Han, M.J.; Park, S.Y.; Kim, D.H.
- Carcinogenesis v.23 The roles of ERK1/2 and p38 MAP kinases in the preventive mechanisms of mushroom Phellinus linteus against the inhibition of gap junctional intercellular communication by hydrogen peroxide. Cho, J.H.; Cho, S.D.; Hu, H.; Kim, S.H.; Lee, S.K.; Lee, Y.S.; Kang, K.S. https://doi.org/10.1093/carcin/23.7.1163
- Kor. J. Oriental Physiol. Pathol. v.16 Study on antitumor and immunomodulatory effects of Cambodian Phellinus linteus Lee, H.J.; Lee, H.J.; Park, J.M.; Song, G.Y.; Kang, K.S.; Kim, S.H.
- J. Kor. Soc. Food Sci. Nutr. v.29 Antimutagenic and cytotoxicity effects of Phellinus linteus extracts. Ji, J.H.; Kim, M.N.; Chung, C.K.; Ham, S.S.
-
J. Fd. Hyg. Safety
v.13
Effects of artificially cultured Phellinus linteus on harmful intestinal bacterial enzymes and rat intestinal
$\beta$ -glucocidases. Kim, D.H.; Choi, H.J.; Bae, E.A. - Arch. Pharm. Res. v.15 Immunostimulating activity of Phellinus linteus extracts to B-lymphocyte. Oh, G.T.; Han, S.B.; Kim, H.M.; Han, M.W.; Yoo, I.D.
- Int. J. Immunopharm. v.18 Stimulation of hormoral and cell mediated immunity by polysaccharide from mushroom Phellinus linteus. Kim, H.M.; Han, S.B.; Oh, G.T.; Kim, Y.H.; Hong, D.H.; Hong, N.D.; Yoo, I.D. https://doi.org/10.1016/0192-0561(96)00028-8
- J. Applied Pharmacol. v.9 Effects of Phellinus linteus extracts on the hormonal immune response in normal and cyclophosphamide-treated mice. Pyo, M.Y.; Hyun, S.M.; Yang, K.S.
- Carbohydr. Res. v.189 Fractionation and antitumor activity of the water-insoluble residue of Agaricus blazei fruiting bodies. Kawagishi, H.; Inagaki, R.; Kanao, T.; Mizuno, T
- Nippon Shokuhin Kagaku Kogaku Kaishi v.45 Tumoricidal activity of high molecular weight polysaccharides derived from Agaricus blazei via oral administration in the mouse tumor model. Fujimiya, Y.; Kobori, H.; Oshiman, K.; Soda, R.; Ebina, T. https://doi.org/10.3136/nskkk.45.246
- Food Sci. Biotechnol. v.10 In vitro and in vivo antitumor activities of water extracts from Agaricus blazei Murill. Chun, H.S.; Choi, E.H.; Kim, H.J.; Choi, C.W.; Hwang, S.J.
- Kor. J. Food Sci. Technol. v.32 Antimutagenic and cytotoxicity effects of Agaricus blazei extracts. Ji, J.H.; Kim, M.N.; Choi, K.P.; Chung, C.K.; Ham, S.S.
- Kor. J. Oriental Physiol. Pathol. v.18 The effects of healthful decoction utilizing Phellinus linteus in carbon tetrachloride-injected rats. Kang, K.H.; Lee, J.H.; Choi, Y.H.; Choi, B.T.; Lee, Y.T.
- J. Biol. Chem. v.272 Regulation of cyclin D1 by calpain protease. Choi, Y.H.;Lee, S.J.;Nguyen, P.; Jang, J.S.; Lee, J.; Wu, M.; Takano, E.; Maki, M.; Henkart, P.; Trepel, J.B. https://doi.org/10.1074/jbc.272.45.28479
-
Int. J. Oncol.
v.23
Induction of Bax and activation of caspases during
$\beta$ -sitosterol-mediated apoptosis in human colon cancer cells. Choi, Y.H.; Kong, K.R.; Kim, Y.A.; Jung, K.O.; Kil, J.H.; Rhee, S.H.; Park, K.Y. - Cancer Res. v.60 The Pezcoller lecture: cancer cell cycles revisited. Sherr, C.J.
- Cell v.81 The retinoblastoma protein and cell cycle control. Weinberg, R.A. https://doi.org/10.1016/0092-8674(95)90385-2
- Curr. Opin. Cell Biol. v.6 Cdk inhibitors: on the threshold of checkpoints and development. Elledge, S.J.; Harper, J.W. https://doi.org/10.1016/0955-0674(94)90055-8
- Cell v.75 The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Harper, J.W.; Adami, G.R.; Wei, N.; Keyomarsi, K.; Elledge, S.J. https://doi.org/10.1016/0092-8674(93)90499-G
- Cancer Res. v.54 WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. El-Deiry, W.S.; Harper, J.W.; O'Connor, P.M.; Velculescu, V.E.; Canman, C.E.; Jackman, J.; Pietenpol, J.A.; Burrell, M.; Hill, D.E.; Wang, Y.; Wiman, K.G.; Mercer, W.E.; Kastan, M.B.; Kohn, K.W.; Elledge, S.J.; Kinzler, K.W.; Vogelstain, B.
- Cell v.80 Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Miyashita, T.; Reed, J.C. https://doi.org/10.1016/0092-8674(95)90412-3
- Nature v.366 p21 is a universal inhibitor of cyclin kinases. Xiong, Y.; Hannon, G.; Zhang, H.; Casso, D.; Kobayashi, R.; Beach, D. https://doi.org/10.1038/366701a0
- Cell Biol. Int. v.17 Multiple pathways to apoptosis. Evans, V.G. https://doi.org/10.1006/cbir.1993.1087
- Best Pract. Res. Clin. Gastroenterol. v.15 COX-2 inhibition and prevention of cancer. Giercksky, K.E. https://doi.org/10.1053/bega.2001.0237
- Int. J. Cancer v.94 Is COX-2 inhibition a panacea for cancer prevention? Vainio, H.
- J. Cancer Res. Clin. Oncol. v.127 Cyclooxygenase-2: a novel target for cancer chemotherapy? Dempke, W.; Rie, C.; Grothey, A.; Schmoll, H.J. https://doi.org/10.1007/s004320000225
-
Mutat. Res.
v.480
Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-
$\kappa$ B activation. Surh, Y.J.; Chun, K.S.; Cha, H.H.; Han, S.S.; Keum, Y.S.; Park, K.K.; Lee, S.S. https://doi.org/10.1016/S0027-5107(01)00183-X - Lab. Invest. v.79 Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Sawaoka, H.; Tsuji, S.; Tsujii, M.; Gunawan, E.S.; Sasaki, Y.;Kawano, S.; Hori, M.
-
J. Clin. Invest.
v.107
Therapeutic potential of inhibition of the NF-
$\kappa$ B pathway in the treatment of inflammation and cancer. Yamamoto, Y.; Gaynor, R.B. https://doi.org/10.1172/JCI11914 - Gene v.269 Activity, function, and gene regulation of the catalytic subunit of telomerase (hTERT) Poole, J.C.; Andrews, L.G.; Tollefsbol, T.O. https://doi.org/10.1016/S0378-1119(01)00440-1
- Oncogene v.21 Complex regulatory mechanisms of telomerase activity in normal and cancer cells: How can we apply them for cancer therapy. Kyo, S.; Inoue, M. https://doi.org/10.1038/sj.onc.1205163
- EMBO J. v.16 ATM-dependent telomere loss in aging human diploid fibroblasts and DNA damage lead to the post-translational activation of p53 protein involving poly(ADP-ribose) polymerase. Vaziri, H.; West, M.D.; Allsopp, R.C.; Davison, T.S.; Wu, Y.S.; Arrowsmith, C.H.; Poirier, G.G.; Benchimol, S. https://doi.org/10.1093/emboj/16.19.6018
- Br. J. Cancer v.85 DNA damage-induced cell cycle checkpoints involve both p53-dependent and -independent pathways: role of telomere repeat binding factor 2. Narayan, S.; Jaiswal, A.S.; Multani, A.S.; Pathak, S. https://doi.org/10.1054/bjoc.2001.2002
- An update. Mutat. Res. v.462 Telomeres, telomerase, and myc. Cerni, C. https://doi.org/10.1016/S1383-5742(99)00091-5