DOI QR코드

DOI QR Code

인체 심혈관계의 이론적 분석을 위한 시스템 시뮬레이션모델에 관한 연구

Systemic Simulation Models for the Theoretical Analysis of Human Cardiovascular System

  • 고형종 (금오공과대학교 기계공학부) ;
  • 윤찬현 (한국정보통신대학교 공학부) ;
  • 심은보 (강원대학교 기계메카트로닉스공학부)
  • 발행 : 2004.12.01

초록

This paper reviews the main aspects of cardiovascular system dynamics with emphasis on modeling hemodynamic characteristics using a lumped parameter approach. Methodological and physiological aspects of the circulation dynamics are summarized with the help of existing mathematical models: The main characteristics of the hemodynamic elements, such as the heart and arterial and venous systems, are first described. Lumped models of micro-circulation and pulmonary circulation are introduced. We also discuss the feedback control of cardiovascular system. The control pathways that participate in feedback mechanisms (baroreceptors and cardiopulmonary receptors) are described to explain the interaction between hemodynamics and autonomic nerve control in the circulation. Based on a set-point model, the computational aspects of reflex control are explained. In final chapter we present the present research trend in this field and discuss the future studies of cardiovascular system modeling.

키워드

참고문헌

  1. F. S. Grodins, 'Integrative cardiovascular physiology: Amathematical synthesis of cardiac and blood vessel hemodynamics,' Quarterly Review of Biology, vol. 34(2), pp. 93-116, 1959 https://doi.org/10.1086/402631
  2. E. O. Attinger and A. Anne, 'Simulation of the cardiovascular system,' Annals of the New York Academy of Sciences, vol. 128, pp. 810-829, 1966 https://doi.org/10.1111/j.1749-6632.1965.tb11701.x
  3. A. P. Avolio, 'Multi-branched model of the human arterial system,' Medical & Biological Engineering & Computing, vol. 18, pp. 709-718, 1980 https://doi.org/10.1007/BF02441895
  4. J. Dagen, 'Pulsatile mechanical and mathematical model of the cardiovascular system,' Medical & Biological Engineering & Computing, 20: 601-607, 1982 https://doi.org/10.1007/BF02443408
  5. H. H. Hardy, R. E. Collins and R. E. Calvert, 'A digital computer model of the human circulatory system,' Medical & Biological Engineering & Computing, vol. 20, pp. 550-564, 1982 https://doi.org/10.1007/BF02443402
  6. J. R. LaCourse, G. Mohankrishnan and K. Sivaprasad, 'Simulations of arterial pressure pulses using a transmission model,' Journal of Biomechanics, vol. 19, pp. 771-780, 1986 https://doi.org/10.1016/0021-9290(86)90200-9
  7. V. K. Sud and G. S. Sekhon, 'Analysis of blood flow through a model of the human arterial system under periodic body acceleration,' Journal of Biomechanics, vol. 19, pp. 929-941, 1986 https://doi.org/10.1016/0021-9290(86)90188-0
  8. M. Ursino, 'Interaction between carotid baroregulation and the pulsating heart: a mathematical model,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 275(5 Pt 2), pp. H1733-47, 1988
  9. D. G. Boyers, J. G. Cuthbertson and J. A. Leutscher, 'Simulation of the human cardiovascular system: a model with normal responses to change of posture, blood loss, transfusion, and autonomic blockade,' Simulation, vol. 18, pp. 197-205, 1972 https://doi.org/10.1177/003754977201800602
  10. R. C. Croston, J. A. Rummel, and F. J. Kay, 'Computer model of cardiovascular control system responses to exercise,' Journal of Dynamic Systems, Measurement, and Control, vol. 95, pp. 301-307, 1973 https://doi.org/10.1115/1.3426719
  11. T. Ejaz, T. Takemae, Y. Kosugi and M. Hongo, 'The high zero-flow pressure phenomenonin coronary circulation: a simulation study,' Frontiers of Medical and Biological Engineering, vol. 11(4), pp. 335-40, 2002 https://doi.org/10.1163/156855701321138978
  12. J. Y. Kresh, M. Fox, S. K. Brockman and A. Noordergraaf, 'Model-based analysis of transmural vessel impedance and myocardial circulation dynamics,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 258(1 Pt 2), pp. H262-76, 1990
  13. W. Schreiner, F. Neumann and W. Mohl, 'Simulation of coronary circulation with special regard to the venous bed and coronary sinus occlusion,' Journal of Biomedical Engineering, 12(5), pp. 429-43, 1990 https://doi.org/10.1016/0141-5425(90)90029-M
  14. E. Magosso and M. Ursino, 'Modelling study of the acute cardiovascular response to hypocapnic hypoxia in healthy and anaemic subjects,' Medical & Biological Engineering & Computing, 42(2), pp. 158-66, 2004 https://doi.org/10.1007/BF02344626
  15. M. Ursino and E. Magosso, G. Avanzolini, 'An integrated model of the human ventilatory control system: the response to hypoxia,' Clinical Physiology, vol. 21(4), pp. 465-77, 2001 https://doi.org/10.1046/j.1365-2281.2001.00350.x
  16. G. N. Jager, N. Westerhof and A. Noordergraaf, 'Oscillatory flow impedance in electrical analog of arterial system: representation of sleeve effect and non-Newtonian properties of blood,' Circulation Research, vol. 16, pp. 121-133, 1965 https://doi.org/10.1161/01.RES.16.2.121
  17. G. Porenta, D. F. Young and D. R. Rogge, 'A finite element model of blood flow in arteries including taper, branches, and obstructions,' Journal of Biomechanics, vol. 108, pp. 161-167, 1986 https://doi.org/10.1115/1.3138596
  18. X. Li, J. Bai, S. Cui and S. Wang, 'Simulation study of the cardiovascular functional status in hypertensive situation,' Medical & Biological Engineering & Computing, vol. 32(5), pp. 345-62, 2002 https://doi.org/10.1016/S0010-4825(02)00020-3
  19. T. Masuzawa, Y. Fukui and N. Y. Smith, 'Cardiovascular simulation using a multiple modeling method on a digital computer-simulation of interaction between the cardiovascular system and angiotensin II,' Journal of Clinical Monitoring, vol. 8(1), pp. 50-58, 1992 https://doi.org/10.1007/BF01618088
  20. D. Jaron, D. W. Moore and C. L. Chu, 'Cardiovascular model for studying impairment of cerebral function during +Gz stress,' Aviation, Space, and Environmental Medicine, vol. 55, pp. 24-31, 1984
  21. K. Campbell, M. Zeglen, T. Kagehiro and H. Rigas, 'A pulsatile cardiovascular computer model for teaching heart-blood vessel interaction,' Physiologist, vol. 25(3), pp. 155-62, 1982
  22. K. Sunagawa and K. Sagawa, 'Models of ventricular contraction based on time-varying elastance,' Critical Reviews in Biomedical Engineering, vol. 7(3), pp. 193-228, 1982
  23. T. Heldt, E. B. Shim, R. D. Kamm and R. G. Mark, 'Computational modeling of cardiovascular response to orthostatic stress,' Journal of Applied Physiology, vol. 92(3), pp. 1239-54, 2002 https://doi.org/10.1152/japplphysiol.00241.2001
  24. E. B. Shim, T. Heldt, R. D. Kamm, R. G. Mark and C. H. Youn, 'Computational Modeling of the Cardiovascular System After Fontan Procedure,' Lecture Notes in Computer Science, vol. 2526, pp. 105-114, 2002
  25. F. M. Melchior, Srinivasan RS and Charles JB, 'Mathematical modeling of human cardiovascular system for simulation of orthostatic response,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 262(6 Pt 2): H1920-33, 1992
  26. I. Mirsky, 'Elastic Properties of the Myocardium: A quantitative approach with physiological and clinical applications,' Handbook of Physiology (The Cardiovascular System), R.M. Berne, Editor. American Physiological Society: Bethesda. 497-431, 1979
  27. L. J. Dell'Italia and R. A. Walsh, 'Application of a time varying elastance model of right ventricular performance in man,' Cardiovascular Research, vol. 22, pp. 864-874, 1988 https://doi.org/10.1093/cvr/22.12.864
  28. H. Senzaki, C. H. Chen and D. Kass, 'Single-beat estimation of end-systolic pressure-volume relation in humans: a new method with the potential for non-invasive application,' Circulation vol. 94, pp. 2497-2506, 1996 https://doi.org/10.1161/01.CIR.94.10.2497
  29. M. Ursino, 'Interaction between carotid baroregulation and the pulsating heart: a mathematical model,' American Journal of Physiology. Heart and Circulatory Physiology, vol. vol. 275(5 Pt 2): p. H1733-47, 1998
  30. M. Ursino and E. Magosso, 'Role of short-term cardiovascular regulation in heart period variability: a modeling study,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 284(4), pp. H1479-93, 2003
  31. M. Ursino, 'A mathematical model of the carotid baroregulation in pulsating conditions,' IEEE Transactions on Biomedical Engineering, vol. 46(4), pp. 382-92, 1999 https://doi.org/10.1109/10.752935
  32. D. J. Burkhoff, C. Alexander and K. Schipke, 'Assessment of Windkessel as a model of aortic impedance,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 255(24), pp. H742-H753, 1988
  33. K. Campbell, M. Zeglen, T. Kagehiro and H. Rigas, 'A pulsatile cardiovascular model for teaching heart-blood vessel interaction,' Physiologist, vol. 25, pp. 155-162, 1982
  34. T. L. Davis and R. G. Mark, 'Teaching Physiology Through Simulation of Hemodynamics,' Computers in Cardiology, vol. 17, pp. 34-37, 1990
  35. T. L. Davis, 'Teaching Physiology Through Interactive Simulation of Hemodynamics,' MS Thesis in Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology: Cambridge, 1991
  36. A. C. Guyton, T. G. Coleman, Manning, Jr. Rd and Hall JE, 'Some problems and solutions for modeling overall cardiovascular regulation,' Mathematical Biosciences, vol. 72, pp. 141-155, 1984 https://doi.org/10.1016/0025-5564(84)90107-X
  37. T. Kenner 'Physical and mathematical modeling in cardiovascular systems,' Quantitative Cardiovascular Studies, University Park: Baltimore, MD. pp. 41-109, 1979
  38. R. J. White, D. G. Fitzjerrell and R. D. Croston, 'Fundamentals of Lumped Compartment Modelling of the Cardiovascular System,' in Advances Cardiovascular Physiology, Karger: Basel. pp. 162-184, 1983
  39. R. Braakman, P. Sipkema and N. Westerhof, 'A dynamic nonlinear lumped parameter model for skeletal muscle circulation,' Annals of Biomedical Engineering, vol. 17, pp. 593-616, 1989 https://doi.org/10.1007/BF02367465
  40. V. C. Rideout and J. Katra, 'Computer simulation study of the pulmonary circulation,' Simulation, vol. 12, pp. 239-245, 1969 https://doi.org/10.1177/003754976901200505
  41. J. Z. Wang, B. Tie, Welkowitz W, Kostis J, Semmlow J, 'Incremental network analogue model of the coronary artery,' Medical & Biological Engineering & Computing, vol. 27(4), pp. 416-22, 1989 https://doi.org/10.1007/BF02441434
  42. M. Zagzoule and J. P. Marc-Vergnes, 'A global mathematical model of the cerebral circulation in man,' Journal of Biomechanics, vol. 19, pp. 1015-1022, 1986 https://doi.org/10.1016/0021-9290(86)90118-1
  43. J. C. Stettler, P. Niederer and M. Anliker, 'Theoretical analysis of arterial hemodynamics including the influence of bifurcations. Part I: mathematical models and prediction of normal pulse patterns,' Annals of Biomedical Engineering. vol. 9(2), pp. 145-64, 1981 https://doi.org/10.1007/BF02363533
  44. X. Xiao, E. T. Ozawa, Y. Huang and R. D. Kamm, 'Model-based assessment of cardiovascular health from noninvasive measurements,' Annals of Biomedical Engineering, vol. 30(5), pp. 612-23, 2002 https://doi.org/10.1114/1.1484217
  45. M. Ursino, L. Coli, C. Brighenti, L. Chiari, A. de Pascalis and G. Avanzolini, 'Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis,' Annals of Biomedical Engineering, vol. 28(2), pp. 204-216, 2000 https://doi.org/10.1114/1.245
  46. L. Coli, M. Ursino, A. De Pascalis, C. Brighenti, V. Dalmastri, G. La Manna, E. Isola, G. Cianciolo, D. Patrono, P. Boni and S. Stefoni, 'Evaluation of intradialytic solute and fluid kinetics. Setting Up a predictive mathematical model,' Blood Purification, vol. 18(1), pp. 37-49, 2000 https://doi.org/10.1159/000014406
  47. L. Coli, M. Bonomini, G. La Manna, V. Dalmast and M. Ursino, 'Clinical use of profiled hemodialysis,' Artificial Organs, vol. 22(9), pp. 724-30, 1998 https://doi.org/10.1046/j.1525-1594.1998.6081R.x
  48. F. M. Melchior, R. S. Srinivasan, G. Ossard and J. M. Clere, 'A mathematical model of the cardiovascular response to +Gz acceleration,' Physiologist, vol. 36(1 Suppl), pp. S62-3, 1993
  49. J. E. W. Beneken and B. DeWitt, 'A Physical Approach to Hemodynamic Aspects of the Human Cardiovascular System,' in Physical Bases of Circulatory Transport: Regulation and Exchange, Saunders: Philadelphia. pp. 1-45, 1967
  50. M. F. Snyder and V. C. Rideout, 'Computer Simulation Studies of the Venous Circulation,' IEEE Transactions on Biomedical Engineering, vol. 16(4), pp. 325-334, 1969 https://doi.org/10.1109/TBME.1969.4502663
  51. X. Y. Luo and T. J. Pedley, 'A numerical simulation of unsteady flow in a 2-D collapsible channel,' Journal of Fluid Mechanics, vol. 314: 191225, 1996
  52. E. B. Shim and R. D. Kamm, 'Numerical simulation of steady flow in a compliant tube or channel with tapered wall thickness,' Journal of Fluids and Structures, vol. 16(6), pp. 1009-1027, 2002 https://doi.org/10.1006/jfls.2002.0461
  53. J. D. Thomas, J. Zhou, N. Greenberg, G. Bibawy, P. M. McCarthy and P. M. Vandervoort, 'Physical and physiological determinants of pulmonary venous flow: numerical analysis,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 272(5 Pt 2), pp. H2453-65, 1997
  54. R. W. DeBoer and J. M. Karemaker and J. Strackee, 'Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat- to-beat model,' American Journal of Physiology. Heart and Circulatory Physiology, vol. 253(3 Pt 2), pp. H680-689, 1987
  55. F. M. Melchior, R. S. Srinivasan and J. M. Clere, 'Mathematical modeling of human cardiovascular response to LBNP,' Physiologist, vol. 35(1 Suppl), pp. S204-205, 1994
  56. M. Ursino, L. Coli, C. Brighenti, L. Chiari, A. de Pascalis and G. Avanzolini, 'Prediction of solute kinetics, acid-base status, and blood volume changes during profiled hemodialysis,' Annals of Biomedical Engineering, vol. 28(2), pp. 204-216, 2000 https://doi.org/10.1114/1.245
  57. C. H. Youn, B. S. Kim, D. S. Nam, E. S. An, B. H. Lee, E. B. Shim, and C. Gari, 'QoS Quorum-Constrained Resource Management in Wireless Grid,' Lecture Notes in Computer Science, vol. 3222, pp. 65-72, 2004