DOI QR코드

DOI QR Code

Development of Reverse Transcriptase-Polymerase Chain Reaction of fimA Gene to Detect Viable Salmonella in Milk

우유 내 활력있는 Salmonella를 검출하기 위한 fimA 유전자의 역전사중합효소 연쇄반응의 개발

  • Choi, S.H. (Dept. of Biotechnology, Sangji University) ;
  • Lee, S.B. (Dept. of Biotechnology, Sangji University)
  • Published : 2004.10.31

Abstract

Rapid detection of viable Salmonella in pasteurized milk is important to protect public health from food poisoning. Reverse transcriptase-polymerase chain reaction(RT-PCR) is recognized as a molecular genetical method to differentiate between live and dead bacteria The RT-PCR in this study was designed to detect specifically viable Salmonella in milk by using the primers whose nucleotide sequences were determined based on fimA gene which encodes the submit of type 1 fimbriae. Treatment of RNA preparation with RNase-free DNase was adequate enough to destroy DNA, which may otherwise be amplified in the RT PCR Seven strains of Salmonella were detected in the RT-PCR but Escherichia coli, Shigella sonnei, Citrobacter freundii, and Klebsiella pneumoniae were not. $10^7/ml$ and $10^6/ml$ of dead Salmonella which were heat-treated in milk were detectable by using the RT-PCR but $10^5{\sim}10/ml$ of the dead bacteria were not. The sensitivity of the RT-PCR in detecting viable Salmonella was 100 cells/ml.

살균된 우유에 오염된 Salmonella의 신속한 검출 방법을 공중 보건의 보호를 위하여 중요하다. RT-PCR 방법은 생균과 사균을 분별하여 검출할 수 있는 분자유전학적 방법이다. 본 연구의 RT-PCR 방법은 Salmonella의 type 1 fImbriae의 단량체 단백질을 암호화하는 fimA 유전자의 mRNA를 주형으로 하여 DNA를 증폭하는 방법으로서 활력이 있는 Salmonella를 검출할수 있기 위하여 개발되었다. RNA 시료를 RQRNase-free DNase로 처리하여 오염된 DNA를 파괴하여 RT-PCR 반응에서 주형으로서 DNA가 합성되는 것을 방지할 수 있었다. 이 RT-PCR 방법은 Salmonella 7균주를 검출하였으나 Escherichia coli, Shigella sonnei, Citrobacter freundii, 및 Klebsiella pneumoniae 는 검출하지 않았다. 우유 내에서 열처리된 $10^7/ml10^6/ml$ 세균수의 Salmonella는 검출되 었으나 $10^5{\sim}100/ml$는 검출되지 않았다. RT-PCR를 검출할 수 있는 활력이 있는 Salmonella의 최소 세균수는 100/ml이었다.

Keywords

References

  1. Bopp, C. A., Brenner,F. W., Wells J. G. and Strockbine N. A. 1999. Escherichia coli, Shigella, and SaImonella. in Manual of Clincal Microbiology,P.R. Murray ed. chapter 28, pp 459-474.
  2. Boyd, E. F. and Hartle D. L. 1999. Analysis of the type 1 pilin gene cluster jim in Salmonella: Its distinct evolutionary histories in the 5' and 3' regions. J. Bacteriol. 181:1301-1308
  3. Boyd, E. F., Nelson, K., Whittam T. S. and Selander R. K. 1994. Molecular genetic relationShips of the salmonellae. Appl. Environ. Microbiol. 62:804-808.
  4. CDC. 2003. Mutistate outbreak of Salmonella serotype typhimurium infections associated with driinking unpastuerized milk-Illinois, Indiana, Ohio, and Tennessee,2002-2003. MMWR Morb. Mortal. Wkly. Rep. 52:613-615.
  5. Clegg, D., Purcell B. K. and Pruck1er, J. 1987. Characterization of genes encoding type 1 fimbriae of Klebsiella pneumoniae, Salmonella typhimurium, and Serratia marcescens. Infect. Immun. 55:282-287.
  6. Clegg, S. and Gerlach G. F. 1987. Enterobacterial fimbriae. J. Bacteriology. 169:934-938.
  7. Cohen, H. J., Mechancla S. M. and Lin, W. 1996. PCR amplification of the fimA gene se-quence of Salmonella typhimurium, a specific method for detection of Salmonella spp. Appl. Environ. Microbiol. 62:4303-4308.
  8. Crichton, P. B., Yakabu D. E., Old, D. C. and Clegg, S. 1989. Immunological and genetical relatedness of type I and type 2 fimbriae in salmonellas of serotype Gallinarum, Pullorum and typhimurium. J. Appl. Bacteriol. 7:283-291.
  9. Duprey, E., Caprais, M. P., Derrien, A. and Fach, P. 1997. Salmonella DNA persistence in natural seawaters using PCR analysis. J. Appl. Microbiol. 82:507-510.
  10. Haeghebaert, S., Sulem, P., Deroudille, L., VanneroyAdenot, E., Bagnis, O., Bouvet, P., Grimont, F., Brisabois, A., Le Querrec, F., Bervy, C; Espie, E., de Valk, H. and Vaillant, V. 2003. Two outbreaks of Salmonella enteritidis phage type 8 linked to the consumption of Gantal cheese made with raw milk, France, 2001. Euro. Surveill. 8: 151-156.
  11. Hashimoto, Y., Itho, Y, Fujinaga, Y, Khan, A. Q., Sultana, F., Miyake, M, Hirose, K., Yamamoto, H. and Ezaki, T. 1995. Development of nested PCR based on the ViaB sequence to detect Salmonella typhi. J. Clin. Microbiol., 33:775-777.
  12. Herman, L. 1997. Detection of viable and dead Listeria monocytogenes by PCR Food Microbiol. 14:103-110.
  13. International Investigation Collaborating Units. 1997. Preliminary report of an international outbreak of Salmonella anatum infection linked to infant formula mille Eur. SurveIl. vol. 2.
  14. Klein, P. G. and Juneja, V. K. 1997. Sensitive detection of viable Listeria monocytogenes by reverse transcription-PCR. Appl. Environ. Microbiol., 63:4441-4448.
  15. Krieg, N. R. 1984. Bergey's manual of systematic bacteriology. Williams and Wilkins, Baltimore and London.
  16. Lillard, H. S. 1986. Role of the fimbriae and flagella in the attachment of Salmonella typhimurium. J Food Sci. 51:54-6. https://doi.org/10.1111/j.1365-2621.1986.tb10834.x
  17. Lin, C. -K. and Tsen, H. -Y. 1995. Development of evaluation of two novel oligonucleotide probes on 16S rRNA sequence for the identification of Salmonella in foods. J. Appl. Bacteriol. 78:507-520.
  18. Masters, C L., Shallcross, J. A. and Mackey, B. M. 1994. Effect of stress treatments on the detection of Listeria monocytogenes and enterotoxigenic Escherichia coli by the polymerase chain reaction. J. Appl. Bacteriol. 77:73-9. https://doi.org/10.1111/j.1365-2672.1994.tb03047.x
  19. McKillip, J. L., Jaykus, L. -A and Drake, M 1999. Nucleic acid persistence in heat-killed Escherichia coli O157:H7 from contaminated skim milk. J. Food Protec. 62:839-844.
  20. Norton, D. -M. and Batt, C A. 1999. Detection of viable Listeria monocytogenes with a 5' nuclease PeR assay. Appl. Environ. Microbiol. 65:2122-2127.
  21. Olsen, J. E., Aabo, S., Hill, W., Notermans, S., Wernars, K., Granwn, P. E., Popovic, T., Rasmussen, H. N. and Olsvik, O. 1995, Probes and polymerase chain reaction for detection of food-borne bacterial pathogens. Int. J. Food Microbiol. 28: 1-78.
  22. Olsen, S. J., Ying, M., Davis, M. F., Deasy, M., Holland, B. Iarnpietro, L., Baysinger, C. M., Sassano, F., Polk, L. D., Gormley, B., Hung, M. J., Pilot, K., Orsini, M., Van Duyne, S., Rnakin, S., Genese, C, Bresnitz, E. A., Smucker, J., Moll, M. and Sobel, J. 2004. Multidrug-resistant Salmonella Typhimurium infection from milk contaminated after pasteurization. Emerg. Infect. Dis. 10:932-935.
  23. Park, J. -K, Seok, W. -S., Choi, B. J., Kim, H. M., Lim, B. K., Yoon, S. -S., Kim, S., Kim, Y. -So and Park, J. Y. 2004. Salmonella enterica serovar London infections associated with consumption of infant formula Yonsei Med. J. 45: 43-48.
  24. Phillips, J. D. and Griffiths, M. W. 1989. Pasterurized dairy products-the contraints imposed by environmental bacterial contamination. in J. O. Nriagu and M. S. Simmons, ed. Advances in Environmental Science and Technology: Food Contamination from Environmental Sources. P. 387. John Willey and Sons, New York.
  25. Purcell, B. K., Pruckler, J. and Clegg, S. 1987. Nucleotide sequences of the genes encoding type I fimbrial subunits of Klebsiella pneumoniae and Salmonella typhimurium. J. Bacteriol. 169:5831-5834.
  26. Sails, A. D., Bolton, F. J., Fox, A. J., Wareing, D. R. A. and Greeway, D. L. A. 1998. A reverse transcriptase polymerase chain reaction assay for the detection of thermophilic Campylobacter spp. Mol. Cell. Probes. 12:317-322.
  27. Sanderson, K. E. and Hessel, A. and Rudd, K. E. 1995. Genetic map of Salmonella typhimurium, edition VIII. Microbiol. Rev. 592:241-303.
  28. Szabo, E. A. and Mackey, B. M. 1999. Detection of Salmonella enteritidis by reverse transcriptionpolymerase chain reaction(PCR). Int. J. Food Microbiol. 51:113-122. https://doi.org/10.1016/S0168-1605(99)00106-3
  29. Sheridan, G. E. C., Masters, C. I., Shallcross, J. A. and Mackey, M. M. 1998. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64:1313-1318.
  30. Spierings, G., Elders, R., van Lith, B., Hofstra, H. and Tommassen, J. 1992. Characterization of the Salmonella typhimurium phoE gene and development of Salmonella-specific DNA probes. Gene 122:45-52.
  31. Usera, M. A., Echeita, A., Aladuefna, A., Blanco, M. C., Reymundo, R., Prieto, M. I., Tello, O., Cano, R., Herrera, D. and Martinez-Navarro, F. 1996. Interregional foodbome salmonellsis outbreak due to powdered infant formula contaminated with lactose-fermenting Salmonella virchow. Euro. J. Epidemiol. 12:377-381 https://doi.org/10.1007/BF00145301
  32. Vaitilingom, M., Gendre, F. and Brignon, P. 1998. Direct detection of viable bacteria, molds, and yeasts by reverse transcriptase PCR in contaminated milk samples after heat treatment. Appl. Environ. Microbiol. 64:1157-1160.
  33. Warnick, L. D., Kaneene, J. b., Ruegg, P. L., Wells, S. J., Fossler, C., Halbert, L. and Campbell, A. 2003. Evaluation of herd sampling for Salmonella isolation on midwest and northeast US dairy farms. Prev. Vet. Med. 60:195-206.

Cited by

  1. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety vol.56, pp.9, 2016, https://doi.org/10.1080/10408398.2013.782483
  2. Detection Methodologies for Pathogen and Toxins: A Review vol.17, pp.8, 2017, https://doi.org/10.3390/s17081885