DOI QR코드

DOI QR Code

Effects of Water Temperature, Salinity and Irradiance on the Growth of the Toxic Dinoflagellate, Gymnodinium catenatum (Graham) Isolated from Yeosuhae Bay, Korea

여수해만에서 분리한 유독 와편모조류, Gymnodinium catenatum (Graham)의 성장에 미치는 수온, 염분과 광 조건


Abstract

A chain-forming toxic din flagellate, Gymnodinium catenatum (Graham) was known as a paralytic toxin-producer among Gymnodinoid group. In the study, the effects of water temperature, salinity and irradiance on the growth of G. catenatum isolated from Yeosuhae Bay, Korea were investigated. Water temperature range in which G. catenatum showed specific growth rate higher than 0.3 day$^{-1}$ were above about 18${^{\circ}C}$. However, salinity did not have such an effect on growth of G. catenatum. The maximum growth rate (0.5 day$^{-1}$) was obtained at 25${^{\circ}C}$ and 30 psu. The specific growth rate (u) expressed as a polynomial equation as functions of temperature (T; ${^{\circ}C}$) and salinity (S; psu) was $\mu$ = 0.005·T$^2$ - 0.0001164 T$^3$ - 0.063-S + 0.005-S$^2$ - 0.00007608-S$^3$ - 0.003-T-S + 0.00005308-T$^2$-S. Thus, in aspects of water temperature and salinity, the species may be expected to survive in most Korean coastal waters from early summer to autumn. The irradiance-growth curve was described as = 0.16 (I - 10.4)/(1 + 21.8) at 18${^{\circ}C}$ and 30 psu, indicating a half-saturation (Ks) photon flux density (PFD) of 42.6$\mu$mol m$^{-2}s^{-1}$ and compensation PFD (I$_0$) of 10.4$\mu$mol m$^{-2}s^{-1}$. These characteristic responses to irradiance suggest that G. catenatum can reside at the sub-surface.

여수해만에서 분리한 Gymnodinium catenatum의 성장에 있어서 최적 수온과 염분 조건을 파악하기 위해 수온 6단계,염분 5단계의 조합에 의한 30단계의 배치배양을 실시하여, 성장속도를 계산하였다. C. catenatum은 약 18${^{\circ}C}$ 이상의 수온과 전 염분단계에서 0.3day$^{-1}$ 이상의 성장속도를 보였으며 수온의 감소와 함께 성장속도도 감소하였다. 하지만 염분은 성장에 그다지 영향을 미치지 않았다. 최대성장속도(0.5day$^{-1}$)는 수온 25${^{\circ}C}$와 염분 30psu에서 얻어졌다. 따라서, 수온과 염분에 따른 성장속도를 고려할 때, C. catenatum은 이른 여름부터 가을까지 한국남해연안해역에서 서식 가능한 것으로 판단된다 이 종의 출현을 예측하기 위한 모델식은 $\mu$ = 0.005-T$^2$ - 0.0001164 T$^3$ - 0.063-S + 0.005-S$^2$ - 0.00007608-S$^3$ - 0.003-T-S + 0.00005308-T$^2$-S로 나타났다. 한편. 수온 18${^{\circ}C}$와 염분 30psu 조건하에서 6단계의 광도 실험을 실시한 결과, 광량에 따른 C. catenatum의 성장은 $\mu$ = 0.16 (I - 10.4)/(1+21.8), (r=0.96)의 관계식으로 Ks는 42.6$\mu$mol m$^{-2}$s$^{-1}$, I$_0$는 10.4$\mu$mol m$^{-2}$s$^{-1}$이었다. 따라서 수온, 염분과 광 조건만을 고려할 경우 C. catenatum은 고수온기 한국 남해 내만과 연안해역에서 우점종으로 출현할 가능성이 높을 것으로 판단되었다.

Keywords

References

  1. Baba T., Hiyama S. and Tainaka T. 2001. Vertical migration of the toxic dinoflagellate Gymnodinium catenatum and toxicity of cultured oyster in Senzaki Bay, Yamaguchi Prefecture. Bull. Plankton Soc. Japan 48: 95-99 (in Japanese with English abstract)
  2. Blackburn S.I., Hallegraeff GM. and Bolch C.J. 1989. Vegetative reproduction and sexual life cycle of the toxic dinoflagellate Gymnodinium catenatum from Tasmania, Australia. J. Phycol.25: 577-590 https://doi.org/10.1111/j.1529-8817.1989.tb00264.x
  3. Brand L.E., Guillard R.R.L. and Murphy L.S. 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res. 3: 193-201 https://doi.org/10.1093/plankt/3.2.193
  4. Bravo I. and Anderson D.M. 1994. The effects of temperature, growth medium and darkness on excystment and growth of the toxic dinoflagellate Gymnodinium catenatum from northwest Spain. J. Plankton Res. 16: 513-525 https://doi.org/10.1093/plankt/16.5.513
  5. Carrada G.c., Casotti R., Modigh M. and Saggiomo V. 1991. Presence of Gymnodinium catenatum (Dinophyceae) in a coastal Mediterranean lagoon. J. Plankton Res. 13: 229-238 https://doi.org/10.1093/plankt/13.1.229
  6. Chang D.S., Shin I.S., Pyeun J.H. and Park Y.H. 1987. A study on paralytic shellfish poison of sea mussel, My tilus edulis. Bull. Korean Fish. Soc. 20: 293-299 (in Korean with English abstract)
  7. Choo H.S., Lee G.H. and Yoon Y.H. 1997. Variations of temperature and salinity in Kugum Suro Channel. J. Korean Fish. 30: 252-263
  8. Doblin M.A., Blackburn S.T and Hallegreff G.M. 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenat um (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol. 236: 33-47 https://doi.org/10.1016/S0022-0981(98)00193-2
  9. FElS (National Research Institute of Fisheries and Environment of Inland Sea) 1998. Paralytic shellfish poisoning of Gymnodinium catenatum in the western Japan. Aquaculture 5: 92-93 (in Japanese)
  10. Fraga S. and Sanchez F.J. 1985. Toxic and potentially toxic dinoflagellates found in Galician rias (NW Spain). In: Anderson D.M., White A.W. and Baden D. (eds), Toxic dinoflagellates. Elsevier, New York. pp. 51-54
  11. Fraga S., Gallager S.M. and Anderson D.M. 1989. Chain-formating dinoflagellates: An adaption to red tides. In: Okaichi T., Anderson D.M. and Nemoto T. (eds), Red Tides. Elsevier, New York. pp. 281-284
  12. Fraga S. and Bakun A. 1993. Global climate change and harmfuI algal blooms: the example of Gymnodinium catenatutn on the Galicia coast. In: Smayda T.J. and Shimizu Y. (eds), Toxic phytoplankton Blooms in the Sea. Elsevier, New York. pp. 59-64
  13. Franca S. and Almeida J.F. 1989. Paralytic shellfish poisons in bivalve molluscs on the Portuguese coast caused by a bloom of the dinoflagellate Gymnodinium carenatum, In: Okaichi T., Anderson D.M. and Nemoto T. (eds), Red Tides. Elsevier, New York. pp. 93-96
  14. Graham H.W. 1943. Gymnodinium catenatum, a new dinoflagellate from the Gulf of California. Trans. Am. Microsc. Soc. 62: 259-261 https://doi.org/10.2307/3223028
  15. Guillard R.R.L. and Ryther D. 1962. Studies of marine planktonic diatoms. 1. Cyelotella nana Hustedt and Deionula conferoacea (Cleve) Gran. Can. J. Microbiol. 8: 229-239 https://doi.org/10.1139/m62-029
  16. Guillard R.R.L. 1995. Culture methods. In: Hallegraeff G.M., Anderson D.M. and Cembella AD. (eds), Manual on harmful marine microalage. UNESCO, Paris. pp. 45-62
  17. Hada Y. 1967. Protozoan plankton of the Inland Sea, Setonaikai. I. The mastigophora. Bull. Suzugamine Woman's cat. Nat. Sci. 13: 1-26
  18. Hallegraeff G.M. and Bolch C.J. 1992. Transport of diatom and dinoflagellate resting spores in ships. ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14: 1067-1084 https://doi.org/10.1093/plankt/14.8.1067
  19. Hallegraeff G.M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32: 79-99 https://doi.org/10.2216/i0031-8884-32-2-79.1
  20. Hallegraeff G.M. and Fraga S. 1998. Bloom dynamics of the toxic dinoflagellate Gymnodinium catenatum, with emphasis on Tasmanian and Spanish coastal waters. In: Anderson D.M., Cembe lla A.D. and Hallegraeff G.M. (e d s ), Physiological Ecology of Harmful Algal Blooms. Springer, Berlin. pp. 59-80
  21. Han M.S., Jeon J.K and Yoon Y.H. 1993. Distribution and toxin profiles of Alexandrium iamarense (Lebour) Balech (dinoflagellate) in the southeastern coastal waters, Korea. Korean J. Phycol. 8: 7-13
  22. Ikeda T., Matsuno S. and Endo R. 1988. Study of shellfish poisoning (part 3), paralytic shellfish poisoning of Gymnodinium catenatum. Annual report of Yamaguchi Institute of Marine and Fisheries Science 16: 59-68 (in Japanese)
  23. Ikeda T., Matsuno S., Sato S., Ogata T., Kodama M., Fukuyo Y. and Takayama H. 1989. First report on paralytic shellfish poisoning caused by Gymnodinium catenu tum (Dinophyceae) in Japan. In: Okaichi T., Anderson D.M. and Nemoto T. (eds), Red Tides. Elsevier, New York. 411-414
  24. Jeon J.K and Han MS. 1998. Monitoring of intoxication and toxin composition on wild mussels (Mytilus corsucus) from coastal waters near Koje Island, Korea in 1996 and 1997. J. Korean Fish. Soc. 31: 817-822 (in Korean with English abstract)
  25. Kim D.S. 2000. Seasonal variation of watermass in the central coast of the Southern Sea of Korea. Bull. Korean Soc. Fish. Tech. 36: 105-116
  26. Kim H.G., Matsuoka K, Lee S.G and An KH. 1996. The occurrence of a dinoflagellate Gymnodinium catenatum from Chinhae Bay, Korea. J. Korean Fish. Soc. 29: 837-842
  27. Kim C.H, 1995. Paralytic shellfish toxin profiles of the dinoflagellate Alcxandrium species isolated from Benthic cysts in Jinhae Bay, Korea. J. Korean Fish. Soc. 28: 364-372
  28. Kim C.H. and Shin J.B. 1997. Harmful and toxic red tide algal development and toxins production in Korean coastal waters. Algae 12: 269-276 (in Korean with English abstract)
  29. Kim C.H. 1998. Development of PSP toxigenic dinoflagellates and toxin production in Korean coastal waters. In: Kim H.C., Lee S.G. and Lee C.K(eds), Harmful algal blooms in Korea and China. National Fisheries Research and Development Institute, Pusan. pp. 1-20 (in Korean)
  30. Kim D.I., Matsuyama Y., Nagasoe S., Yamaguchi M., Yoon Y.H., Oshima Y., Imada N. and Honjo T. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res. 26: 61-66 https://doi.org/10.1093/plankt/fbh001
  31. Lederman I.C. and Tett P. 1981. Problems in modeling the photosynthesis- light relationship for phytoplankton. Bot. Mar. 24: 125-134 https://doi.org/10.1515/botm.1981.24.3.125
  32. Lee C.K, Lee S.C. and Kim H.G 1999. Occurrence and abundance of three morphologically similar dinoflagel-lates, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the southern coast of Korea. Bull Natl. Fish. Res. Dev. Int. Korea. 57: 131-139 (in Korean with English abstract)
  33. Lee C.K., Kim H.C., Lee S.G., Jung C.S., Kim H.G. and Lim W.A. 2001. Abundance of harmful algae, Cochlodinium polykrikoides, Gyrodinium impudicum and Gymnodinium catenatum in the coastal area of South Sea of Korea and their effects of temperature, salinity, irradiance and nutrient on the growth in culture. J. Korean Fish. Soc. 34: 536-544 (in Korean with English abstract)
  34. Lee J.S., Shin I.S., Kim Y.M., and Chang D.S. 1997. Paralytic shellfish toxins in the Mussel, Mytilus edulis, caused the shellfish poisoning accident at Geoje, Korea, in 1996. J. Korean. Fish. Soc. 30: 158-160 (in Korean with English abstract)
  35. Matsuoka K. and Fukuyo Y. 1994. Geographical distribution of the toxic dinoflagellate Gymnodinium catenatum Graham in Japanese coastal waters. Bot. Mar. 37: 495-503 https://doi.org/10.1515/botm.1994.37.6.495
  36. Mee L.D., Espinosa M. and Diaz G. 1986. Paralytic shellfish poisoning with a Gymnodinium catenatum red tide on the Pacific coast of Mexico. Mar. Environ. Res. 19: 77-92 https://doi.org/10.1016/0141-1136(86)90040-1
  37. Nishioka J., Wada Y. and Imanishi Y. 1993. On the occurrences of Gymnodinium catenatum (Dinophyceae) in Kumihama Bay. Bull. Kyoto. Inst. Ocean. Fish. 16: 43-49 (in Japanese with English abstract)
  38. Oh S,J., Yamamoto T., Kataoka Y., Matsuda 0., Matsuyama Y. and Kotani Y. 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish. Sci. 68: 416-424 https://doi.org/10.1046/j.1444-2906.2002.00440.x
  39. Oh S.J., Matsuyama Y., Oda S., Moriyama T. and Uchida T. 2003. Environmental feature causing a bloom of the novel dinoflagellate Heterocapsa circularisquama (Dinophyceae) in Uranouchi Bay, Kochi Prefecture, Japan. Algae 18: 281-288 (in Korean with English abstract) https://doi.org/10.4490/ALGAE.2003.18.4.281
  40. Oshima Y., Hasegawa M., Yasumoto T., Hallegraeff G.M. and Blackburn S.L 1987. Dinoflagellate Gymnodinium catenatum as the source of paralytic shellfish toxins in Tasmanian shellfish. Toxicon 25: 1105-1111 https://doi.org/10.1016/0041-0101(87)90267-4
  41. Poole H.H. and Atkins W.R.G. 1929. Photo-electric measurement of submarine illumination throughout the year. J. Mar. Bioi. Ass. U. K. 16: 297-324 https://doi.org/10.1017/S0025315400029829
  42. Takahashi M. and Hara Y. 1989. Control of diel vertical migration and cell division rhythm of Heterosigma akashiwo by day and night cycles. In: Okaichi T., Anderson D.M., Nemoto T. (eds), Red Tides. Elsevier, New York. pp. 265-268
  43. Yamaguchi M. and Honjo T. 1989. Effects of temperature, salinity and irradiance on the growth of the noxious red tide flagellate Gymnodinium nagasakiense (Dinophyceae). Nippon Suisan Gakkaishi 55: 2029-2036 (in Japanese with English abstracts) https://doi.org/10.2331/suisan.55.2029
  44. Yamaguchi M. 2000. Physiological ecology, mechanisms and prediction of the red tide of Gymnodinium mikimotoi (Dinophyceae). In: Ishida Y., Honjo T., Fukuyo Y. and Imai I. (eds). Mechanisms, Prediction, and Mitigation of harmful algal blooms in Japan. Tokyo. pp. 101-136 (in Japanese)
  45. Yamamoto T., Yoshizu Y. and Tarutani K. 1995. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Mikawa Bay, Japan. Jpn. J. Phycol. 43: 91-98 (in Japanese with English abstracts)
  46. Yamamoto T. and Tarutani K. 1997. Effects of temperature, salinity and irradiance on the growth of toxic dinoflagellate Alexandrium tamarense isolated from Hiroshima Bay, Japan. Jpn. J. Phycol. 45: 95-101 (in Japanese with English abstracts)
  47. Yamamoto T., Oh S.J. and Kataoka Y. 2002. Effects of temperature, salinity and irradiance on the growth of the toxic dinoflagellate Gymnodinium catenatum (Dinophyceae) isolated from Hiroshima Bay. Japan. Fish. Sci. 68: 356-363
  48. Yang Y.R. 1978. Optical properties of sea water (IV). Bull Korean Fish. Tech. Soc. 14: 37-41 (in Korean with English abstract)
  49. Yoon Y.H. 2000. Variation characteristics of water quality and chlorophyll a concentration in the Northern Karnak bay of Southern Korea. J. Korean Environ. Sci. Soc. 9: 429-436 (in Korean with English abstract)

Cited by

  1. Uptake and Excretion of Dissolved Organic Phosphorus by Two Toxic Dinoflagellates, Alexandrium tamarense Lebour (Balech) and Gymnodinium catenatum Graham vol.9, pp.1, 2006, https://doi.org/10.5657/fas.2006.9.1.030
  2. The Effect of Environmental Factors on the Advent of Chattonella (Raphidophyceae) in Yeosu Coastal Waters, Korea, and the Effect of Nutrients on the Growth of Chattonella vol.43, pp.4, 2010, https://doi.org/10.5657/kfas.2010.43.4.362
  3. Vertical Profiles of Marine Environments and Micro-phytoplankton Community in the Continental Slope Area of the East China Sea in Early Summer 2009 vol.16, pp.3, 2013, https://doi.org/10.7846/JKOSMEE.2013.16.3.151
  4. Growth Response of the Dinoflagellate Akashiwo sanguinea in Relation to Temperature, Salinity and Irradiance, and its Advantage in Species Succession vol.20, pp.1, 2014, https://doi.org/10.7837/kosomes.2014.20.1.001
  5. Effects of Water Temperature, Salinity and Irradiance on the Growth of Harmful Dinoflagellate Cochlodinium polykrikoides Margelef isolated from South Sea of Korea in 2008 vol.43, pp.6, 2010, https://doi.org/10.5657/kfas.2010.43.6.715
  6. Effects of Water Temperature, Salinity and Irradiance on the Growth of the Harmful Algae Chattonella marina (Subrahmanyn) Hara et Chihara (Raphidophyceae) Isolated from Gamak Bay, Korea vol.39, pp.6, 2006, https://doi.org/10.5657/kfas.2006.39.6.487
  7. Monthly Variation of Phytoplankton Community in Asan Bay, Korea vol.16, pp.4, 2011, https://doi.org/10.7850/jkso.2011.16.4.238
  8. A hierarchy of conceptual models of red-tide generation: Nutrition, behavior, and biological interactions vol.47, 2015, https://doi.org/10.1016/j.hal.2015.06.004