DOI QR코드

DOI QR Code

RESEARCH PAPERS : A STUDY ON ELECTROCHEMICAL OXIDATION OF CATECHOL IN CHLORIDE MEDIUM FOR WASTEWATER TREATMENT APPLICATION

  • D. Rajkumar (Research Institute of Industrial Technology, Chonbuk National University) ;
  • Kim, Jong-Guk (Research Institute of Industrial Technology, Chonbuk National University) ;
  • Kim, Kyeo-Keun (Department of Environmental Engineering, Chongju University)
  • Published : 2004.12.31

Abstract

Keywords

References

  1. Lin, S. H. and Peng, C. F., 'Treatment of textile wastewater by electrochemical method,' Water Res., 28, 277-282 (1994) https://doi.org/10.1016/0043-1354(94)90264-X
  2. Alien, S. J., Khader, K. Y. H., and Bino, M., 'Electrooxidation of dyestuffs in waste-waters,' J Chem. Technol. Biotechnol., 62, 111-117 (1995) https://doi.org/10.1002/jctb.280620202
  3. Vlyssides, A. G. and Israilides, C. J., 'Electrochemical oxidation of a textile dye and finishing wastewater using a Pt/Ti electrode,' J. Environ. Sci. Health, A33, 847-862 (1998)
  4. Vijayaraghavan, K., Ramanujam, T. K., and Balasubramanian, N., 'In situ hypochlorous acid generation for the treatment of textile wastewater,' Color. Technol., 117, 49-54 (2001) https://doi.org/10.1111/j.1478-4408.2001.tb00335.x
  5. Chiang, L. C, Chang, J. E., and Wen, T. C., 'Indirect oxidation effect in electrochemical oxidation treatment of landfill leachate,' Water Res., 29, 671-678 (1995) https://doi.org/10.1016/0043-1354(94)00146-X
  6. Chiang, L. C., Chang, J. E., and Tseng, S. C., 'Electrochemical oxidation treatment of refractory organic pollutants,' Water Sci. Technol., 36, 123-130 (1997)
  7. Vijayaraghavan, K., Ramanujam, T. K., and Balasubramanian, N., 'In situ hypochlorous acid generation for treatment of tannery wastewaters,' J Environ. Eng., 124, 887-891 (1998) https://doi.org/10.1061/(ASCE)0733-9372(1998)124:9(887)
  8. Panizza, M., Bocca, C., and Cerisola, G., 'Electrochemical treatment of wastewater containing polyaromatic organic pollutants,' Water Res., 34, 2601-2605 (2000) https://doi.org/10.1016/S0043-1354(00)00145-7
  9. Buso, A., Balbo, L., Giomo, M., Farnia, G., and Sandona, G., 'Electrochemical removal of tannins from aqueous solutions,' Ind. Eng. Chem. Res., 39, 494-499 (2000) https://doi.org/10.1021/ie990192a
  10. Rajeshwar, K. and Ibanez, J. G., Environmental Electrochemistry; Fundamentals and Applications in Pollution Abatement, (Academic Press, Inc), California, (1997)
  11. Gattrell, M. and Kirk, D. W., 'The electrochemical oxidation of aqueous phenol at a glassy carbon electrode,' Can. J. Chem. Eng., 68, 997-1003 (1990) https://doi.org/10.1002/cjce.5450680615
  12. Comninellis, C. and Pulgarin, C., 'Anodic oxidation of phenol for wastewater treatment,' J. Appl. Electrochem., 21, 703-708 (1991) https://doi.org/10.1007/BF01034049
  13. Comninellis, C. and Pulgarin, C., 'Electrochemical oxidation of phenol for wastewater treatment using $SnO_2$ anode,' J. Appl. Electrochem., 23, 108-112 (1993)
  14. Tahar, N. B. and Savall, A., 'Mechanistic aspects of phenol electrochemical degradation by oxidation on a Ta/$PbO_2$ anode,' J. Electrochem. Soc., 145, 3427-3434 (1998) https://doi.org/10.1149/1.1838822
  15. Comninellis, C. and Nerini, A., 'Anodic oxidation of phenol in the presence of NaCI for wastewater treatment,' J. Appl. Electrochem., 25, 23-28 (1995)
  16. Iniesta, J., Gonzalez, G., J., Exposito, E., Montiel, V., and Aldaz, A., 'Influence of chloride ion on electrochemical degradation of phenol in alkaline medium using bismuth doped and pure $PbO_2$ anodes,' Water Res., 35, 3291-3300 (2001) https://doi.org/10.1016/S0043-1354(01)00043-4
  17. Shivaraman, N. and Pandey, R. A., 'Characterization and biodegradation of phenolic wastewater,' Journal IAEM, 27, 12-15 (2000)
  18. Godbole, A. and Chakrabarti, T., 'Biodegradation in upflow anaerobic fixed-film fixed-bed reactors of resorcinol, catechol and phenol in mono and binary substrate matrices,' Water Res., 25,11]3-1120 (1991)
  19. Latkar, M. and Chakrabarti, T., 'Resorcinol, catechol and hydroquinone biodegradation in mono and binary substrate matrices in upflow anaerobic fixed-film fixed-bed reactors,' Water Res., 28, 599-607 (1994) https://doi.org/10.1016/0043-1354(94)90010-8
  20. Chettiar, M. and Watkinson, A. P., 'Anodic oxidation of phenolics found in coal conversion effluents,' Can J. Chem. Eng., 6], 568-574 (1983)
  21. Comninellis, C. and Vercesi, G. P., 'Characterization of DSA type oxygen evolving electordes: choice of a coating,' J. Appl. Electrochem., 21, 335-345 (1991) https://doi.org/10.1007/BF01020219
  22. Pletcher, D. and Walsh, F. C., 'Industrial Electrochemistry.' Blackie academic and professional, London (1993)
  23. APHA, AWWA, WPCF., 'Standard Methods for the Examination of Water and Wastewater,' 20th Ed. Washington D.C (1998)
  24. Murphy, O. J., Hitchens, G. D., Kaba, L., and Verostko, G. E., 'Direct electrochemical oxidation of organics for wastewater treatment,' Water Res., 26, 443-451(1992)

Cited by

  1. Influence of Supporting Electrolytes on Electrochemical Treatability of Reactive Black 5 Using Dimensionally Stable Anode pp.2250-2157, 2019, https://doi.org/10.1007/s40030-019-00360-4
  2. THE MICROSTRUCTURE OF Pb-DOPED SOLIDIFIED WASTE FORMS USING PORTLAND CEMENT AND CALCITE vol.11, pp.1, 2006, https://doi.org/10.4491/eer.2006.11.1.054
  3. Hybrid Electrochemical Desalination System Combined with an Oxidation Process vol.6, pp.2, 2018, https://doi.org/10.1021/acssuschemeng.7b02789