Immunoliposomes Carrying Plasmid DNA : Preparation and Characterization

  • Kim, Na-Hyung (College of Pharmacy, Ewha Womans University) ;
  • Park, Hyo-Min (College of Pharmacy, Ewha Womans University) ;
  • Chung, Soo-Yeon (College of Pharmacy, Ewha Womans University) ;
  • Go, Eun-Jung (College of Pharmacy, Ewha Womans University) ;
  • Lee , Hwa-Jeong (College of Pharmacy, Ewha Womans University)
  • Published : 2004.01.01

Abstract

The objective of this study was to characterize immunoliposomes carrying plasmid DNA with optimal encapsulation efficiency and antibody density. Plasmid DNA was encapsulated by the freezing/thawing method into liposomes composed of POPC (1-palmitoyl-2-oleoyl-sn-glycerol- 3-phosphocholine), DDAB (didodecyl dimethyl ammonium bromide), DSPE-PEG 2000 (distearoyl phosphatidyl ethanolamine polyethylene glycol 2000) and DSPE-PEG 2000-maleimide. The liposomes carrying plasmid DNA were extruded through two stacked polycarbonate filters, of different pore size, to control the liposome size. Then, rat IgG molecules were conjugated to the liposomes. The immunoliposomes containing plasmid DNA were separated from the free plasmid DNA and unconjugated IgG by Sepharose CL-4B column chromatography. The DNA amount encapsulated was affected by DDAB (cationic lipid) concentration, the initial amount of plasmid DNA between 10 ${\mu}g$ and 200 ${\mu}g$, the total lipid amount and plasmid DNA size, but not significantly by liposome size. By varying the ratio of DSPE-PEG 2000-maleimide to IgG, the number of IgG molecules per liposome was changed significantly.

Keywords

References

  1. Bailey, A. L. and Sullivan, S. M., Efficient encapsulation of DNA plasmids in small neutral liposomes induced by ethanol and calcium. Biochim. Biophys. Acta, 1468, 239-252 (2000) https://doi.org/10.1016/S0005-2736(00)00264-9
  2. Boris-Lawrie, K. A. and Temin, H. M., Recent advances in retrovirus vectortechnology. Curr. Opin. Genet. Dev., 3, 102-109 (1993) https://doi.org/10.1016/S0959-437X(05)80349-1
  3. Harrison, G. S.,Wang, Y., Tomezak, J., Hogan, C., Shpall, E. J., Curiel, T. J., and Feigner, P. L., Optimization of genetransfer using cationic lipids in cell lines and primary human CD4+ and CD34 hematopoietic cells. Biotechniques, 19, 816-823 (1995)
  4. Huwyler, J., Dafang, W., and Pardridge, W. M., Brain drug delivery of small molecules using immunoliposomes. Proc. Natl. Acad. Sci. U.S.A., 93,14164-14169 (1996) https://doi.org/10.1073/pnas.93.24.14164
  5. Lamb, B. T., Sisodia, S. S., Lawler, A. M., Siunt, H. H., Kitt, C. A., Kearns, W. G., Pearson, P. L., Price, D. L., and Gearhart, J. D., Introduction and expression of the 400 kilobase precursor amyloid protein gene in transgenic mice. Nature Genet., 5, 22-30 (1993) https://doi.org/10.1038/ng0993-22
  6. Li, S. and Huang, L., In vivo gene transfer via intravenous administration of cationic lipid-protamine-DNA (LPD) complexes. Gene Ther., 4, 891-900 (1997) https://doi.org/10.1038/sj.gt.3300482
  7. Li, S. and Huang, L., Nonviral gene therapy: promises and challenges. GeneTher., 7, 31-34 (2000) https://doi.org/10.1038/sj.gt.3301110
  8. Mamot, C., Drummond, D. C., Greiser, U., Hong, K., Kirpotin, D. B., Marks, J. D., and Park, J. W., Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediated specific and efficient drug delivery to EGFR- and EGFRvllloverexpressing tumor cells. Cancer Res., 63, 3154-3161 (2003)
  9. Maruyama, K., Ishida, O., Takizawa, T., and Moribe, K., Possibility of active targeting to tumor tissues with liposomes. Adv. Drug Deliv. Rev., 40, 89-102 (1999) https://doi.org/10.1016/S0169-409X(99)00042-3
  10. Miller, A. D., Retroviral vectors. Curr. Top. Microbiol. Immunol., 158, 1-24 (1992) https://doi.org/10.1007/978-3-642-75608-5_1
  11. Monnard, P.-A., Oberholzer,T., and Luisi, P. L., Entrapment of nucleic acids in liposomes. Biochim. Biophys. Acta,1329, 3950 (1997)
  12. Nabel, G. J., Nabel, E. G., Yang, Z.-Y., Fox, B. A., Plautz, G. E., Gao, X., Huang, L., Shu, S., Gordon, D., and Chang, A. E., Direct gene transfer with DNA-liposome complexes in melanoma: expression, biologic activity and lack of toxicity in humans. Proc. Natl. Acad. Sci. U.S.A., 90, 11307-11311 (1993) https://doi.org/10.1073/pnas.90.23.11307
  13. Pardridge, W. M., Buciak, J. L., and Yoshikawa, T., Transport of recombinant CD4 through the rat blood-brain barrier in vivo. J. Pharmacol. Exp. Ther., 261, 1175-1180 (1992)
  14. Park, H. M., Chung, S. Y., Go, E. J., and Lee, H. J., Preparation and characterization of plasmid DNA encapsulated in liposomes. J. Kor. Pharm. Sci., 33, 209-213 (2003)
  15. Pastorino, F., Stuart, D., Ponzoni, M., and Allen, T. M., Targeted delivery of antisense oligonucleotides in cancer. J. Control Release, 74, 69-75 (2001) https://doi.org/10.1016/S0168-3659(01)00312-1
  16. Saravolac, E. G., Ludkovski,O., Skirrow, R., Ossanlou, M., Zhang, Y. P., Giesbrecht, C., Thompson, J., Thomas, S., Stark, H., Cullis, P. R., and Scherrer, P., Encapsulation of plasmid DNA in stabilized plasmid-lipid particles composed of different cationic lipid concentration for optimal transfection activity. J. Drug Target, 7, 423-437 (2000) https://doi.org/10.3109/10611860009102217
  17. Schatzlein, A. G., Non-viral vectors in cancer gene therapy: principles and progress. Anti-Cancer Drugs, 12, 275-304 (2001) https://doi.org/10.1097/00001813-200104000-00001
  18. Setoguchi, Y., Jaffe, H. A., Chu, C.-S., and Crystal, R. G., Intraperitoneal in vivo gene therapy to deliver alpha 1antitrypsin to the systemic circulation. Am. J. Resp. Cell. Mol. BioI., 10, 369-377 (1994) https://doi.org/10.1165/ajrcmb.10.4.8136153
  19. Shi, N. and Pardridge, W. M., Noninvasive gene targeting to the brain. Proc. Natl. Acad. Sci. U.S.A., 97, 7567-7572 (2000) https://doi.org/10.1073/pnas.130187497
  20. Smith, T. A., Mehaffey, M. G., Kayda, D. B., Saunders, J. M., Yei, S., Trapnell, B. C., McClelland, A., and Kaleko, M., Adenovirus mediated expression of therapeutic plasma levels of human factor IX in mice. Nature Genet., 5, 397-402 (1993) https://doi.org/10.1038/ng1293-397
  21. Stuart, D. D. and Allen, T. M., A new liposomal formulation for antisense oligodeoxynucleotides with small size, high incorporation efficiency and good stability. Biochim. Biophys. Acta,1463, 219-229 (2000) https://doi.org/10.1016/S0005-2736(99)00209-6
  22. Worgall, S., Wolff, G., Falck-Pedersen, E., and Crystal, R. G., Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum. Gene Ther., 8, 37-44 (1997) https://doi.org/10.1089/hum.1997.8.1-37
  23. Yang, Y., Li, Q., Ertl, H. C., and Wilson, J. M., Cellular and humoral immune responses to viral antigens create barriers to lung-directed gene therapy with recombinant adenoviruses. J. Virol., 69, 2004-2015 (1995a)
  24. Yang, Y., Nunes, F. A., Berencsi, K., Furth, E. E., Gonczol, E., and Wilson, J. M., Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc. Natl. Acad. Sci. U. S. A., 91, 4470-4411 (1995b)