Prediction on the Chiral Behaviors of Drugs with Amine Moiety on the Chiral Cellobiohydrolase Stationary Phase Using a Partial Least Square Method

  • Choi, Sun-Ok (Division of Biopharmaceutics, Department of Pharmacology, National of Toxicological Research, Korea Food and Drug Administration) ;
  • Lee, Seok-Ho (Division of Biopharmaceutics, Department of Pharmacology, National of Toxicological Research, Korea Food and Drug Administration) ;
  • Park Choo , Hea-Young (School of Pharmacy, Ewha Womans University)
  • 발행 : 2004.01.01

초록

Quantitative Structure-Resolution Relationship (QSRR) using the Comparative Molecular Field Analysis (CoMFA) software was applied to predict the chromatographic behaviors of chiral drugs with an amine moiety on the chiral cellobiohydrolase (CBH) columns. As a result of the Quantitative CoMFA-Resolution Relationship study, using the partial least square method, prediction of the behavior of drugs with amine moiety upon chiral separation became possible from their three dimensional molecular structures. When a mixed mobile phase of 10 mM aqueous phosphate buffer (pH 7.0) - isopropanol (95 : 5) was employed, the best Quantitative CoMFA-Resolution Relationship, derived from the study, provided a cross-validated $q^2$ = 0.933, a normal $r^2$ = 0.995, while the best Quantitative CoMFA-Separation Factor Relationship, also derived from the study, yielded a cross-validated $q^2$ = 0.939, a normal $r^2$ = 0.991. When all of these results are considered, this QSRR-CoMFA analysis appears to be a very useful tool for the preliminary prediction on the chromatographic behaviors of drugs with an amine moiety inside chiral CBH columns.

키워드

참고문헌

  1. Balmer, K., Persson, A., Langerstorm, P.O., Persson, B. A., and Schill, G., Liquid chromatographic separation of the enantiomers of metoprolol and its alpha-hydroxy metabolite on chiralcel OD for determination in plasma and urine. J. Chromatogr., 553, 391-397 (1991) https://doi.org/10.1016/S0021-9673(01)88509-5
  2. Blanco, M., Coello, J., Elaamrani, M., Iturriaga, H., and Maspoch., S., Partial least squares regression for the quantitation of pharmaceutical dosages in control analyses. J. Pharm. Biomed. Anal., 15, 329-338 (1996) https://doi.org/10.1016/S0731-7085(96)01859-6
  3. Blanco, M., Coello, J., Iturriga, H., Maspoch, S., Redon, M., and Villegas, N., Artificial neural networks and partial leastsquares regression for pseudo-first-order with respect to the reagent multicomponent kinetic-spectrophotometric determinations. Analyst, 121, 395-400 (1996) https://doi.org/10.1039/an9962100395
  4. Cramer, R. D., Patterson, D. E., and Bunce, J. D., Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J. Am. Chem. Soc., 110,5959-5967 (1988) https://doi.org/10.1021/ja00226a005
  5. Dohnal, V., Farkova, M., and Havel, J., Prediction of chiral separations using a combination of experimental design and artificial neural networks. Chirality, 11,616-621 (1999) https://doi.org/10.1002/(SICI)1520-636X(1999)11:8<616::AID-CHIR2>3.0.CO;2-R
  6. De Boer, T., Bijmar, R., and Ensing, K., Modeling of conditions for the enantiomeric separation of beta adrenergic sympathicomimetrics by capillary electrophoreses using cyclodextrin as chiral selectors in a polystylene glycol gel. J. Pharm. Biomed. Anal., 19, 529-537 (1999) https://doi.org/10.1016/S0731-7085(98)00249-0
  7. Fornstedt, T., Zhong, G., Bensetiti, Z., and Guiochon, G., Experimental and theoretical study of the adsorption behavior and mass transfer kinetics of propranolol enantiomers on cellulose protein as the selector. Anal. Chem., 68, 2370-2378 (1996) https://doi.org/10.1021/ac960088s
  8. Gasteiger, J. and Marsili, M., Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron, 36, 3219-3228 (1980) https://doi.org/10.1016/0040-4020(80)80168-2
  9. Hanssan, Y. A. and Vince, S., Direct enantiomeric separation of cathinone and one major metabolite on cellobiohydrolase (CBH-I) chiral stationary phase. Biomed. Chromatogr., 11, 47-49 (1997) https://doi.org/10.1002/(SICI)1099-0801(199701)11:1<47::AID-BMC626>3.0.CO;2-M
  10. Havel, J., Moreno, C., Hrdlika, A., and Valiente, M., Evaluation of inductively coupled plasma-atomic emission spectroscopy multicomponent trace analysis data by partial least-squares calibration. Chem. Papers., 50,125-130 (1996)
  11. Heriksson, H., Stahlberg, J., Isaksson, R., and Petersson, G., The active sites of cellulases are involved in chiral recognition : a comparison of cellobiohydrolase 1 and endoglucanase 1. FEBS Lett., 390, 339-344 (1996) https://doi.org/10.1016/0014-5793(96)00685-0
  12. Lammerhofer, M., Di Eugenio, P, Molnar, I., and Lindler, W., Computerized optimization of the high-performance liquid chromatographic enantioseparation of a mixture of 4-dinitro amino acids on a quinine carbamate-type chiral stationary phase using DRYLAB. J. Chromatogr. B Biomed. Sci. Appl., 689, 123-135 (1997) https://doi.org/10.1016/S0378-4347(96)00366-0
  13. Lanchote, V. L., Bonato, P. S., Cerqueira, P. M., Pereira V. A., and Cesarino, E. J., Enantioselective analysis of metoprolol in plasma using high-performance liquid chromatographic separations. J. Chromatogr. B, 738(1), 27-37 (2000) https://doi.org/10.1016/S0378-4347(99)00476-4
  14. Pharm-Huy, C., Radenen, B., Sahui-Gnassi, A., and Claude, J. R., High-performance liquid chromatographic determination of (S)-and (R)-propranolol in human plasma and urine with a chiral beta-cyclodextrin bonded phase. J. Chromatogr. B, 665 (1995) https://doi.org/10.1016/0378-4347(94)00511-3
  15. Sallustio, B. C., Morris, R. G., and Horowitz, J. D., Highperformance liquid chlomatographic determination of sotalol in plasma. Application to the disposition of sotalol enantiomers in humans. J. Chromatogr., 576(2), 321-327 (1992) https://doi.org/10.1016/0378-4347(92)80206-6
  16. Jong, S., Chemometrical applications in an industrial food research laboratory. Microchim. Acta,2, 93-101 (1991)
  17. Torgny, T., Hesselgren, A. M., and Johansson, M., Chiral assay of atenolol present in microdialysis and plasma samples of rats using chiral CBH as stationary phase. Chirality, 9(4), 329 (1997) https://doi.org/10.1002/(SICI)1520-636X(1997)9:4<329::AID-CHIR3>3.0.CO;2-8
  18. Van Eeckhaut, A., Boonkerd, S., Detaevernier, M. R., and Michotte, Y., Development and evaluation of a linear regression method for prediction of maximal chiral separation of basic drug racemate cyclodextrin-mediated capillary zone electrophoresis. J. Chromatogr. A, 903, 245-254 (2000) https://doi.org/10.1016/S0021-9673(00)00897-9
  19. Zhou, D., Kaczmaski, K., Cavazzini, A., Liu, X., and Guiochon, G., Modeling of the separation of two enantiomers using a microbore column. J. Chromatogr. A, 1020, 199-217 (2003) https://doi.org/10.1016/j.chroma.2003.08.065