DOI QR코드

DOI QR Code

침식률 측정결과를 사용하는 유사이동모형의 적용

Application of Sediment Transport Model Using Observed Erosion Rates

  • Jung, Tae-Sung ;
  • Craig, Jones (Dept. of Mechanical and Environmental Engineering, University of California at Santa Barbara) ;
  • Lick, Wilbert (Dept. of Mechanical and Environmental Engineering, University of California at Santa Barbara)
  • 발행 : 2004.12.01

초록

현장에서 교란하지 않고 채취한 유사 시료의 침식률을 측정한 결과를 직접 활용하여 침식률을 계산하는 2차원 유사이동 수치모형을 수립하고, 적용성을 검토하기 위하여 미국 팍스강에서 홍수시 유사 수송과정을 모의하였다. 큰 전단응력 하에서도 침식률 측정이 가능한 Sedflume을 사용하여 현장에서 채취된 시료의 침식률이 깊이별, 전단응력 별로 측정되었다. 수치모형은 침식률 측정자료를 모형에서 직접 사용하며, 부유사와 소류사 이동을 모두 고려한다. 개발된 모형은 1차원 직선수로에서 유사수송에 대해 검증되었다. 홍수시 팍스강의 유사 수송과정을 모의하고 부유사 농도의 시간변화에 대해 검증한 결과, 모의결과가 관측치와 잘 일치하여 현장 침식률 값을 직접 사용하는 모형이 효과적임을 확인할 수 있었다.

A 2-dimensional numerical sediment transport model using erosion rates in undisturbed conditions has been developed and applied to calculating the suspended sediment concentrations and bed level changes in the Lower Fox River The model reduces inaccuracy of sediment model by using the accurate erosion rates obtained in a flume (called Sedflume). The flume has been developed to measure erosion rates as a function of sediment depth and at the situation of high shear stresses such as flood event. Both mechanisms of suspended load and bedload transport are included in the model. The model results were verified for the description of sediment transport in a straight channel and the sediment transport during flood event in the Lower Fox River The results of Lower Fox River simulation showed good agreements with the observed SS concentrations. This model can be used to simulate sediment transport under the high shear conditions such as flood.

키워드

참고문헌

  1. 정태성 (2001a). '홍수시 하천 퇴적물의 침식량 추정.' 한국수자원학회지, 한국수자원학회, 제34권 제5호, pp. 53-59
  2. 정태성 (2001b). '침식률 측정자료를 이용한 2차원 퇴적물 수송모형의 개발.' 한국수자원학회논문집, 제34권, 제6호, pp. 687-699
  3. Ariathurai, R., and Krone, B.K. (1976). 'Finite element model for cohesive sediment transport.' J. of the Hydraulic Division, ASCE, Vol. 102, No. HY3, pp. 323-338
  4. Cheng, N.S. (1997). 'Simplified settling velocity formula for sediment particle.' J. of Hydraulic Engineering, ASCE, Vol. 133, No. 2, pp. 149-152 https://doi.org/10.1061/(ASCE)0733-9429(1997)123:2(149)
  5. Gailani, J., Ziegler, C.K., and Lick, W. (1991). 'The transport of sediments in the Fox River.' J. of Great Lakes Research, Vol. 17, pp. 479-494 https://doi.org/10.1016/S0380-1330(91)71384-1
  6. Gessler, J. (1967). The beginning of bedload movement of mixtures investigated as natural armoring in channels. Translation T-5, W.M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology
  7. Guy, H.P., Simons, D.B., and Richardson, E.V. (1966). Summary of alluvial channel data from flume experiments, 1956-1961. Geological Survey Professional Paper 462-I, Washington, D.C.
  8. Lick, W., Ziegler, K., and Lick, J. (1986). 'Interior and boundary difference equations for hyperbolic differential equations.' Numerical Method for Partial Differential Equations, Vol. 2, pp. 157-172 https://doi.org/10.1002/num.1690020302
  9. McNeil, J., Taylor, C., and Lick, W. (1996). 'Measurements of erosion of undisturbed bottom sediments with depth.' J. of Hydraulic Engineering, ASCE, Vol. 122, No. 6, pp. 316-324 https://doi.org/10.1061/(ASCE)0733-9429(1996)122:6(316)
  10. Metha, A.J., McAnally, W.H., Hayter, E.J., Teeter, A.M., Schoellhamer, D., Heltzel, S.B., and Carey, W.P. (1989). 'Cohesive sediment transport II: Application.' J. of Hydraulic Engineering, Vol. 115, No. 8, pp. 1094-1112 https://doi.org/10.1061/(ASCE)0733-9429(1989)115:8(1094)
  11. Roberts, J., Jepsen, R., Gotthard, D., and Lick, W. (1998). 'Effects of particle size and bulk density on erosion of quartz particles.' J. of Hydraulic Engineering, ASCE, Vol. 124, No. 12, pp. 1261-1267 https://doi.org/10.1061/(ASCE)0733-9429(1998)124:12(1261)
  12. van Niekerk, A., Vogel, K.R., Slingerland, R.L., and Bridge, J.S. (1992). 'Routing of heterogeneous sediments over movable bed: Model development.' J. of Hydraulic Engineering, ASCE, Vol. 118, No. 2, pp. 246-262 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(246)
  13. van Rijn, L.C. (1984a). 'Sediment transport, Part I: Bed load transport.' J. of Hydraulic Engineering, ASCE, Vo. 110, No. 10, pp. 1431-1456 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:10(1431)
  14. van Rijn, L.C. (1984b). 'Sediment transport, Part II: Suspended load transport.' J. of Hydraulic Engineering, ASCE, Vol. 110. No. 11, pp. 1613-1641 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:11(1613)
  15. Vogel, K.R., van Niekerk, A., Slingerland, and John, S.B. (1992). 'Routing of heterogeneous sediments over movable bed : Model verification.' J. of Hydraulic Engineering, ASCE, Vol. 118, No. 2, pp. 263-279 https://doi.org/10.1061/(ASCE)0733-9429(1992)118:2(263)

피인용 문헌

  1. A Combined Model of Hydrology, Hydraulics, Erosion and Sediment Transport at Watershed Scale vol.14, pp.5, 2014, https://doi.org/10.9798/KOSHAM.2014.14.5.351