Oxygen and Hydrogen Isotopic Compositions of the Hwacheon Granite

화천화강암의 산소와 수소 동위원소 조성

  • Published : 2004.12.01

Abstract

Oxygen and hydrogen isotopic compositions of the Jurassic peraluminous Hwacheon granite were measured, and compared with those of other Jurassic peraluminous Daebo granite in Korea. $\delta$$\^$18/O values for quartz and feldspar of the Hwacheon granite range from 8.2 to 10.6 and 5.8 to 9.0$\textperthousand$, respectively. Whole rock $\delta$$\^$18/O values for banded biotite gneiss country rocks surrounding the Hwacheon granites range from 8.1 to 9.4$\textperthousand$. Whole rock and biotite $\delta$D Values for Hwacheon granite range from -84 to -113 and -107 to -113$\textperthousand$, respectively. Whole rock $\delta$D values for banded biotite gneiss country rocks range from -76 to -100$\textperthousand$. Both $\delta$$\^$18/O and $\delta$D values of the Hwacheon granite are characterized by low values compared to the 'normal' values for the fresh peraluminous granitic rocks. Low $\delta$$\^$18/O values of the Hwacheon granite resulted from fluid-rock interaction for a long period. Isotopic modelling result renders that a relatively low-$\delta$$\^$18/O fluid below -1$\textperthousand$ was involved in subsolidus isotopic exchange under a relatively high fluid/rock ratio (<-6). The fluid of meteoric origin has experienced a modification of oxygen isotopic composition as a result of fluid-rock interaction with the Hwacheon granite and surrounding metapelitic country rocks.

중생대 쥬라기에 생성된 과알루미나질 화천화강암의 산소와 수소 안정 동위원소 조성을 알아보고, 이들 값이 다른 지역에 분포하는 쥬라기 화강암이 가지는 값과 어떠한 차이를 보이는지를 비교해보았다. 화천화강암을 구성하는 석영과 사장석은 각각 8.2에서 10.6$\textperthousand$과 5.8에서 $\delta$$^{18}$ O 값을 가지며, 화천 화강암 주위에 분포하는 호상흑운모편마암의 전암 $\delta$$^{18}$ O 값은 8.1에서 9.4사이의 값을 갖는다 화천화강암의 전암과 흑운모의 $\delta$D 값은 각각 -84에서 -113$\textperthousand$과 -107에서 -l13$\textperthousand$ 사이의 값을 갖는다. 기반암의 전암 $\delta$D 값은 -76에서 -100$\textperthousand$ 사이의 값을 갖는다. 화천화강암의 $\delta$$^{18}$ O과 $\delta$D값은 과알루미나질 화강암이 전형적으로 가지는 값에 비해 낮은 값을 가지는 특징을 보여준다. 화천화강암이 가지는 낮은 $\delta$$^{18}$ O 값은 오랜 기간 동안 이루어진 유체-암석 상호작용으로부터 기인한 것이다. 안정동위원소 모델링 결과는 약 1$\textperthousand$ 이하의 비교적 낮은 $\delta$$^{18}$ O 값을 가지는 유체가 비교적 높은 유체/암석 IB(<-6) 환경 하에서 동위원소 교환반응이 일어났음을 지시해준다. 이 유체는 천수가 화천화강암 및 주변에 분포하는 변성이질암과의 오랜 시간에 걸친 산소동위원소 반응 결과 $\delta$$^{18}$ O 값이 무거워진 유체이다.

Keywords

References

  1. Brigham, R.H. and O'Neil, J.R., 1985, Genesis and evolu-tion of water in a two-mica pluton: a hydrogen isotope study. Chem Geol, 49, 159-177
  2. Cathelineau, M. and Nieva, D., 1985, A chlorite solid solu-tion geothermeter. The Los Azufres (Mexico) geothermal system. Contrib. Mineral. Petrol. 91, 235-244
  3. Chappell, B. W. and White, A. J. R., 1974, Two contrasting granitic types. Pacific Geol., 8, 173-174
  4. Cho, D.-L. and Kwon S.-T., 1994, Hornblende geobarome-try of the Mesozoic genitoids in South Korea and the evolution of crustal thickness. Jour. Geol. Soc. Korea. 30, 41-61
  5. Cho, D.-L., Suzuki, K., Adachi, M. and Chwae, U., 1996, A preliminary CHIME age determination of monazites from metamorphic and granitic rocks in the Gyeonggi massif, Korea. J. Earth and Planet. Sci. Nagoya univ., 43, 49-65
  6. Clayton, R. N. and Mayeda, T. K., 1963, The use of bro-mine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cos-mochim, Acta, 72, 43-52
  7. Cole, D.R. and Ohmoto, H., 1986, Kinetics of isotopic exchange at elevated temperatures and pressures. In: Valley, J.W., Taylor, H.P., O'Neil (eds.). Stable isotopes in high temperature geological processes, Rev. in Mineralogy, 16, Min. Soc. Am., 91, 41-90
  8. Criss, R.E., 1999, Principles of stable isotope distribution, Oxford University Press, 254 p
  9. Etheridge, M. A., Wall, V. J. and Vernon, R. H., 1983, The role of the fluid phase during regional metamorphism and deformation. Journal of Metamorphic Geology, 1, 205-226
  10. Garlick, G.D. and Epstein, S., 1967, Oxygen isotope ratios in coexisting minerals of regionally metamorphosed rocks. Geochim. Cosmochim. Acta 31, 181-214
  11. Gregory, R.T., and Criss, R.E., 1986, Isotopic exchange in open and closed system. In: Valley, J.W., Taylor, H.P., O'Neil (eds.). Stable isotopes in high temperature geological processes, Rev. in Mineralogy, 16, Min. Soc. Am., 91, 91-127
  12. Kim, K.H., 1991, Isotope Geology, Mineumsa, 552 p
  13. Lee, D.E., Friedman, I., and Gleason, J.D., 1982, The oxygen isotope composition of granitoid and sedimentary rocks of the southern Snake Range, Nevada. Contributions to Mineralogy and Petrology, 79, 150-158
  14. Lee, S. R. and Cho, M., 2003, Metamorphic and tectonic evolution of the Hwacheon granulite Complex, central Korea: Composite P-T path resulting from two distinct crustal-thickening events. Journal of petrology, 44, 197-225
  15. Lee, S. R., Cho, M., Cheong, C.-S. and Park, K.-H., 1997, An early Proterozoic Sm-Nd age of mafic granulite from the Hwacheon area, South Korea. Geoscience Journal, 1, 136-142
  16. Masi, U., O'Neil, J.R., and Kistler, R.S., 1981, Stable isotope systematics in Mesozoic granites of central and northern California and southwestern Oregon. Contributions to Mineralogy and Petrology, 76, 116-126
  17. Nabelek, P. I., O'Neil, J. R. and Papike, J.J., 1983, Vapor Phase exsolution as a controlling factor in hydrogen isotope variation in granitic rocks: the North Peak granitic stock, Utha. Earth Planet. Sci. Lett., 66, 137-150
  18. Nabelek, P.I., Russ-Nabelek, C., and Haeussler, G.T., 1992, Stable isotope evidence for the petrogenesis and fluid evolution in the Proterozoic Harney Peak leucogranite, Black Hills, South Dakota, Geochimica et Cosmochimica Acta, 56, 403-417
  19. O'Neil, J.R. and Chappell, B.W., 1977, Oxygen and hydrogen isotope relations in the Berridale Batholith, southeastem Australia. Journal of the Geological Society of London, 133, 554-571
  20. O'Neil, J. R., Shaw, S.E., Flood, R.H., 1977, Oxygen and hydrogen isotope compositions as indicators of granite gneiss in the New England Batholith, Australia. Contrib. Mineral. Petrol., 62, 313-328
  21. Park, K. H., Lee, B. J., Cho, D. L. and Kim, J. B., 1997, Explanatory text of the geological map of Hwacheon sheet (scale 1:50,000). Korea Inst. Geol. Mining and Materials
  22. Park, K.-H. and Noh, J. H., 2000, Geochemical study on the genesis of Chuncheon nephrite deposits. Jour. Petrol. Soc. Korea, 9, 53-69
  23. Sagong H., Kwon, S.-T., Jeon, E.-Y. and Mertzman, S. A., 1997, Petrology and geochemistry of the Hwacheon granite. Journal of the Geological Society of Korea, 33, 99-110. (in Korean with English abstract)
  24. Taylor, H. P. Jr., 1977, Water/rock interactions and the origin of $H_2O$ in granitic batholiths. J. Geol. Soc. Lond., 133, 509-558
  25. Taylor, B.E., Eichelberger, J.C. and Westrich, H. R., 1983, Hydrogen isotopic evidence of rhyolitic magma degassing during shallow intrusion and eruption. Nature, 306, 541-545
  26. Valley, J. W. and O'Neil, J. R., 1982, Oxygen isotope evidence for shallow emplacement of Adirondack anorthosite. Nature, 301, 226-228
  27. Vennemann, T. W. and O'Neil, J. R., 1993, A simple and inexpensive method of hydrogen isotope and water analyses of minerals and rocks based on zinc regent. Chem. Geol. (Isotope Geosci. Sec.), 103, 227-234
  28. Wickham, S. M. and Taylor H. P. Jr, 1985, Stable isotopic evidence for large-scale seawater infiltration in a regional metamorphic terrane; the Trois Seigneurs Massif, Pyrenees, France. Contrib. Mineral. Petrol, 91, 122-137
  29. Yui, T.-F. and Kwon, S.-T., 2002, Origin of a Dolomiterelated jade deposit at Chuncheon, Korea. Econ. Geol., 97, 593-601
  30. Zheng, Y.-F., 1993, Calculation of oxygen isotope fractionation in anhydrous silicate minerals. Geochim. Cosmochim. Acta, 57, 1079-1091