DOI QR코드

DOI QR Code

The Evolution of Preferred Orientation and Morphology of NiO Thin Films under Variation of Plasma gas and RF Sputtering Power

플라즈마 가스와 RF 파워에 따른 NiO 박막의 우선배향성 및 표면형상 변화

  • 류현욱 (조선대학교 에너지자원신기술 연구소) ;
  • 최광표 (조선대학교 에너지자원신기술 연구소) ;
  • 노효섭 (조선대학교 신소재 공학과) ;
  • 박용주 (조선대학교 신소재 공학과) ;
  • 권용 (조선대학교 신소재 공학과) ;
  • 박진성 (조선대학교 신소재 공학과)
  • Published : 2004.02.01

Abstract

Nickel oxide (NiO) thin films were deposited on Si(100) substrates at room temperature by RF magnetron sputtering from a NiO target. The effects of plasma gas and RF power on the crystallographic orientation and surface morphology of the NiO films were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) were employed to characterize the deposited film. It was found that the type of plasma gases affected the crystallographic orientation, deposition rate, surface morphology, and crystallinity of NiO films. Highly crystalline NiO films with (100) orientation were obtained when it was deposited under Ar atmosphere. On the other hand, (l11)-oriented NiO films with poor crystallinity were deposited in $O_2$. Also, the increase in RF power resulted in not only higher deposition rate, larger grain size, and rougher surface but also higher crystallinity of NiO films.

Keywords

References

  1. Z. M. Jarzebski, Oxide Semiconductors, pp. 53-139, Pergamon Press, Oxford, England, (1973)
  2. C. A. Vincent, F. Bonino, M. Lazzari and B. Scrosati, Modern Batteries, pp. 34-36, Edward Arnold, London, England, (1987)
  3. S. Yamada, T. Yoshioka, M. Miyashita, K. Urabe and M. Kitao, J. Appl. Phys., 63, 2116 (1988) https://doi.org/10.1063/1.341066
  4. J. Scarminio, A. Urbano, B. J. Grades and A. Gorenstein, J. Mater. Sci. Lett., 11, 562 (1992) https://doi.org/10.1007/BF00728608
  5. T. Maruyama and S. Arai, Sol. Energy Mater. Sol. Cells, 30, 257 (1993) https://doi.org/10.1016/0927-0248(93)90145-S
  6. K. Yoshimura, T. Mikim and S. Tanemura, Jpn. J. Appl. Phys., 34, 2440 (1995) https://doi.org/10.1143/JJAP.34.2440
  7. Y. Sato, S. Tamura and K. Murai, Jpn. J. Appl. Phys., 35, 6275 (1996) https://doi.org/10.1143/JJAP.35.6275
  8. E. L. miller and R. E. Rocheleau, J. Electrochem. Soc., 144, 1995 (1997) https://doi.org/10.1149/1.1837734
  9. H. Kumagai, M. Matsumoto, K. Toyoda and M. Obara, J. Mater. Sci. Lett., 15, 1081 (1996) https://doi.org/10.1007/BF00274914
  10. T. C. Anthony, J. A. Brug and S. Zhang, IEEE Trans. Magn., 30, 3819 (1994) https://doi.org/10.1109/20.333913
  11. C. Lai, H. Matsuyama, R. L. White and T. C. Anthony, IEEE Trans. Magn., 31, 2609 (1995) https://doi.org/10.1109/20.490068
  12. R. Nakatani, K. Hoshino, H. Hoshiya and Y. Sugita, Mater. Trans. JIM, 37, 1710 (1996) https://doi.org/10.2320/matertrans1989.37.1710
  13. S. S. Lee, D. G. Hwang, C. M. Park, K. A. Lee, M. Y. Kim and J. R. Rhee, IEEE Trans. Magn., 32, 3416 (1996) https://doi.org/10.1109/20.538642
  14. S. S. Lee, D. G. Hwang, C. M. Park, K. A. Lee and J. R. Rhee, J. Appl. Phys., 81, 5298 (1997) https://doi.org/10.1063/1.364948
  15. C. Lai, T. J. Regan, R. L. White and T. C. Anthony, J. Appl. Phys., 81, 3989 (1997) https://doi.org/10.1063/1.364916
  16. D. H. Han, J. G. Zhu and J. H. Judy, J. Appl. Phys., 81, 4996 (1997) https://doi.org/10.1063/1.364964
  17. C. Lai, W. E. Bailey, R. L. White and T. C. Anthony, J. Appl. Phys., 81 4990 (1997) https://doi.org/10.1063/1.364963
  18. H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films, 236, 27 (1993) https://doi.org/10.1016/0040-6090(93)90636-4
  19. P. Puspharajah, S. Radhakrishna and A. K. Arof, J. Mater. Sci., 32, 3001 (1997) https://doi.org/10.1023/A:1018657424566
  20. Y. Tasaka, H. Kuroda, M. Tanaka and S. Usami, Thin Solid Films, 281-282, 441 (1996) https://doi.org/10.1016/0040-6090(96)08670-1
  21. A. B. Berzin, C. W. Yuan and A. L. De lozanne, Appl. Phys. Lett., 57, 90 (1990) https://doi.org/10.1063/1.104238
  22. D. L. Schulz, P. A. Parilla, H. Gopalaswamy, A. Swartzlander, A. Duda, R. D. Blaugher and D. S. Ginley, Mater. Res. Bull., 30, 689 (1995) https://doi.org/10.1016/0025-5408(95)00069-0
  23. Y. M. Lu, W. S. Hwang and J. S. Yang, Surface and Coatings Technology, 155, 231 (2002) https://doi.org/10.1016/S0257-8972(02)00037-3
  24. P. Lunkenheimer, A. Loidl, C. R. Ottermann and K. Bange, Phys. Rev., B, 44, 5927 (1991) https://doi.org/10.1103/PhysRevB.44.5927
  25. E. Fujii, A. Tomazawa, S. Fujii, H. Torii, M, Hattori and R. Takayama, Jpn. J. Appl. Phys., 32, L1448 (1993) https://doi.org/10.1143/JJAP.32.L1448
  26. A. J. Varkey and A. F. Fort, Thin Solid Films, 235, 47 (1993) https://doi.org/10.1016/0040-6090(93)90241-G
  27. D. R. James, Optical thin films, p.28, SPIE, Washington, (1987)
  28. H. F. Winters and P. Sigmund, J. Appl. Phys., 45, 4760 (1974) https://doi.org/10.1063/1.1663131