DOI QR코드

DOI QR Code

Effect of Alloy Addition (Ta, Nb) on Oxidation Behavior of cp-Ti for Biomaterials

생체용 Ti합금의 산화거동에 미치는 Ta 및 Nb 첨가의 영향

  • 이도재 (전남대학교 공과대학 금속공학과) ;
  • 오태욱 (전남대학교 공과대학 금속공학과) ;
  • 박범수 (전남대학교 공과대학 금속공학과) ;
  • 김수학 (전남대학교 공과대학 금속공학과) ;
  • 전충극 ((주)금강기건 부설연구소) ;
  • 윤계림 ((주)금강기건 부설연구소)
  • Published : 2004.03.01

Abstract

The oxidation behaviors of Ti-10Ta-10Nb alloy and Ti-6Al-4V alloy were studied in dry air atmosphere. Specimens were melted in consumable vacuum arc furnace and homogenized at $1050^{\circ}C$ for 24 h. Hot rolling was performed at $1000^{\circ}C$. Specimens of the alloys were oxidized as the temperature range $400~650^{\circ}C$ for 30 min. The oxidation behavior of the alloys was analysed by optical microscope, SEM/EDX, XRD, XPS and TGA. Immersion test was performed in 1% Lactic acid. In the microscope observation, oxide layer of Ti-10Ta-10Nb alloy was denser and thinner than Ti-6Al-4V's. The weight gains during the oxidation rapidly increased at the temperature above $600^{\circ}C$ in Ti-6Al-4V's alloy and$ 700^{\circ}C$ in Ti-10Ta-10Nb alloy. According to XRD results, oxide layers were composed of mostly $TiO_2$(rutile) phase. It was analysed that the passive film of the Ti alloys consisted of $TiO_2$ through X-ray photoelectron spectroscopy(XPS) analysis.

Keywords

References

  1. J. S. Lee and J. Choi, Bull. Kor. Inst, Met. Mater., 7(3), 236 (1994)
  2. Y. T. Lee and Y. T. Hyun, ibid., 8(3), 286 (1995)
  3. K. Bordji and J. Y. Jouzeau, Biomaterials, 17(9), 929 (1996) https://doi.org/10.1016/0142-9612(96)83289-3
  4. A. N. Petrunko and V. M.Anokhin, Titanium 95 Science and Technology, 2, 1816 (1995)
  5. Y. Okazaki, K. Kyo, Y. Ito and T. Tateishi, J. Jan. Inst. Metals, 59(10), 1061 (1995) https://doi.org/10.2320/jinstmet1952.59.10_1061
  6. T. Ahmed, M. Long, J. Silvestri, C. Ruiz and H. J. Rack, Titanium 95 Science and Technology, 2, 1760 (1995)
  7. S. G. Steinemann, Evalution of Biomaterials, p 1, John Wiley & Sons Ltd., (1980)
  8. J. P. Landsberg, B. McDonald, and F. Watt, Nature(London), 360, 65 (1992) https://doi.org/10.1038/360065a0
  9. S. Yumoto, Int. J. of PIXE, World Scientific Publishing Company, 2(4), 493 (1992) https://doi.org/10.1142/S0129083592000531
  10. G. Farrar, J. A. Blair, P. Altmann, S. Welch, O. Wychrij, B. Ghose, J. Lejeune, J. Corbett and V. Prasher, Lancet, 335, 747 (1990) https://doi.org/10.1016/0140-6736(90)90868-6
  11. D. Velten, V. Biehl, J. Biomed. Mater. Res., 59(1), 206 (2001) https://doi.org/10.1002/jbm.1212
  12. J. H. Shin, K. H. Lee, C. H. Lee, J. Kor. Inst. Met. Mater., 39(2), 206 (2001)
  13. E. J. Park, D. K. Kim, K. H. Kim, Takao Hanawa, H. I. Kim, Y. S. Jung, J. Kor. Res. Soc. Den. Mater., 27(1), 43 (2000)
  14. T. R. Yoon, S. M. Rowe, J. Y. Jung, E. K. Song and S. T. Jung, KOSOMBE, New Trends in Medical Imaging, 89 (2003)
  15. Y. Okazaki, Y. Ito, A. Ito and T. Tateishi, Biomaterials, 19, 1621 (1998) https://doi.org/10.1016/S0142-9612(97)00146-4
  16. H. K. Kang and H. K. Cho, J. Kor. Inst. Met. Mater., 30(11), (1992)
  17. Y. U. Kim and J. P. Jung, J. Kor. Foundrymen's Soc., 18(5), 76 (1998)
  18. M. A. Daeubler, D. Helm and G. Lutjering, Titanium '95 Science and Technology, 709 (1995)
  19. H. J. Cho and J. H. Lee, Kor. J. Mate. Res., 4, 626 (1994)
  20. H. W. Maynor Jr., B. R. Barret and R. E. Swift, Corrosion, 12, 49-60, (1956)
  21. L. Peiyng, T. Ye, P. Gen, C.Bocheng and L. Xiangyang, Surf. Coat. Technol., 128-129, 89 (2000) https://doi.org/10.1016/S0257-8972(00)00610-1
  22. M. Yoshihara and K. Miura, Intermetallic, 3, 357 (1995) https://doi.org/10.1016/0966-9795(95)94254-C
  23. H. L. Du, P. K. Datta, D. B. Lewis and J. S. Burnell-Gray, Corros. Sci., 36(4), 631 (1994) https://doi.org/10.1016/0010-938X(94)90069-8
  24. T. Hurlen, J. Inst. Metals, 89, 128 (1960)
  25. J. Black and G. Hastings, Handbook of Biomaterial Properties, p. 135, Chapman & Hall (1998)
  26. R. J. Hanrahan Jr. and D. P. Butt, Oxidat. Met., 47(3/4), 317 (1997) https://doi.org/10.1007/BF01668517

Cited by

  1. Fabrication and characterization of functionally graded nano-micro porous titanium surface by anodizing vol.88B, pp.2, 2009, https://doi.org/10.1002/jbm.b.31124