해수가 흡수된 Carbon-Epoxy 적층복합재의 압축특성에 대한 연구- 정수압력 영향

A Study on the Compressive Properties of Seawater-absorbed Carbon-Epoxy Composites - Hydrostatic Pressure Effect

  • 발행 : 2004.12.01

초록

본 논문에서는 고분자기지 복합재의 해저환경에서의 압축특성에 대한 영향을 연구하였다. 실험에 사용된 시편은 두꺼운 두께를 갖는 적층된 Carbon-Epoxy 복합재를 사용하였으며, 충분한 해수 함유를 위해 시편을 해수에 13개원 동안 침지시켰다. Carbon-Epoxy 복합재의 포화 해수함유량은 시편무게의 약 1.2%였다. 해저환경을 모사하기 위해 네 경우의 정수압력(0.1, 100, 200, 270 MPa)을 적용하여 실험하였다. 실험결과로써 압축탄성계수는 정수압력이 0.1 MPa에서 200 MPa로 증가함에 따라 약 10%정도 증가하였다. 또한 압력을 270 MPa로 증가시킴에 따라 압축탄성계수는 2.3%가 더 증가하였다. 압축파괴강도와 압축파괴변형률은 정수압력이 증가함에 따라 선형적으로 증가함을 알 수 있었다. 정수압력이 0.1 MPa에서 270 MPa로 증가함에 따라 압축파괴강도는 약28%가 증가하였고 압축파괴변형률은 약 8.5%의 증가를 나타내었다.

This study investigated the effect of deep-sea environment on the compressive characteristics of polymer matrix composite. The specimens used in the experiment were thick Carbon-Epoxy composites that were made from Carbon-Epoxy prepregs. The specimens were immersed into seawater for thirteen months. The seawater content at saturation was about 1.2% of the specimen weight. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. It was found that the compressive elastic modulus increased about 10% as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The modulus increased additional 2.3% as the pressure increased to 270 MPa. It was also found that compressive fracture strength and compressive fracture strain increased with pressure in a linear behavior. Compressive fracture strength increased 28% and compressive fracture strain increased 8.5% as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.

키워드

참고문헌

  1. Enns, J.B. and Gilham, J.K. (1983). Time-temperature-trans-formation (TTT) cure diagram: modeling the cure behavior of thermoset. J. of Applied Polymer Science, 28, 2567-2576 https://doi.org/10.1002/app.1983.070280810
  2. Karasek, M.L., Srait, L.H. and Amateau, M.F. (1992). Effects of seawater immersion on the impact resistance of glass fiber reinforced epoxy composites. J. Compos. Technol. Research., 26, 14
  3. Ogi, K. and Takeda, N. (1997). Effects of moisture content on nonlinear deformation behavior of carbon fiber-epoxy composites. Compos. Mater., 31, 530-551 https://doi.org/10.1177/002199839703100601
  4. Pae, K.D. and Carlson, K.S. (1998). Combined effects of hydrostatic pressure and strain-rate on the compressive properties of a laminated, multi-directional graphite/epoxy thick composites. J. Compos. Mater., 32, 49-67
  5. Pae, K.D. and Rhee, K.Y. (1995). Effect of hydrostatic pressure on the compressive behavior of thick laminated 45${\circ} and 90${\circ} unidirectional graphite-fiber/epoxy matrix composites. Compos. Sci. Technol., 53, 281-287 https://doi.org/10.1016/0266-3538(94)00080-8
  6. Parry, T.V. and Wronski, A.S. (1981). The effect of hydrostatic pressure on the tensile properties of pultruded CFRP. J. Mater. Sci., 17, 2141-2147 https://doi.org/10.1007/BF00540433
  7. Pairy, T.V. and Wronski, A.S. (1990). The effect of hydrostatic pressure on transverse strength of glass and carbon fiber-epoxy composites. J. Mater. Sci., 25, 3162-3166 https://doi.org/10.1007/BF00587668
  8. Rhee, K.Y. and Pae, K.D. (1995). Effects of hydrostatic pressure on the compressive properties of laminated O${\circ} unidirectional behavior of graphite fiber/epoxy thick composites. J. Compos, Mater., 29, 1295-1307 https://doi.org/10.1177/002199839502901002
  9. Russell, AJ. and Street, K.N. (1989). Mosture and temperature effects on the mode I and mode II interlaminar fracture of carbon-epoxy fracture of carbon-epoxy composites. Key Eng. Mater., 37, 199-208 https://doi.org/10.4028/www.scientific.net/KEM.37.199
  10. Shin, E.S. and Pae, K.D. (1992). Effect of hydrostatic pressure on the torsional shear behavior of graphite/epoxy composites. J. Compos. Mater., 26, 462-485 https://doi.org/10.1177/002199839202600401
  11. Shin, E.S. and Pae, K.D. (1992). Effects of hydrostatic pressure on in-plane shear properties of graphite/epoxy composites. J. Compos. Mater., 26, 828-868 https://doi.org/10.1177/002199839202600604
  12. Zinoviev, P.A., Tsvetkov, S.V., Kulish, G.G., Van, den Berg and L.Van. Schepdael (1998). Mechanical properties of unidirectional organic-fiber-reinforced plastics under hydrostatic pressure. Compos. Sci. Technol., 58, 31-39 https://doi.org/10.1016/S0266-3538(97)00079-1