DOI QR코드

DOI QR Code

Weak convergence for weighted sums of level-continuous fuzzy random variables

수준 연속인 퍼지 랜덤 변수의 가중 합에 대한 약 수렴성

  • 김윤경 (동신대학교 정보통신공학과)
  • Published : 2004.12.01

Abstract

The present paper establishes a necessary and sufficient condition for weak convergence for weighted sums of compactly uniformly integrable level-continuous fuzzy random variables as a generalization of weak laws of large numbers for sums of fuzzy random variables.

이 논문에서는 퍼지 랜덤 변수의 합에 대한 약한 대수의 법칙을 일반화로서, 컴팩트 일양 적분 가능한 수준 연속 퍼지 랜덤 변수의 가중 합이 약 수렴하기 위한 동치 조건을 구하였다.

Keywords

References

  1. G. Debreu, Integration of correspondences, Proc. Fifth Berkley Symp. on Math. Statist. Prob. Vol. 2 (1966), 251-372
  2. H. Inoue, A strong law of large numbers for fuzzy random sets, Fuzzy Sets and Systems 41 (1991), 285-291 https://doi.org/10.1016/0165-0114(91)90132-A
  3. G. S. Choi, S. Y. Joo, Y. K. Kim and]. S. Kwon, Convergence in distribution for level-continuous fuzzy random sets, submitted
  4. S. Y. Joo, Strong law of large numbers for tight fuzzy random variables, J. Korean Statist. Soc. 31 (2002), 129-140
  5. S. Y. Joo, Weak laws of large numbers for fuzzy random variables, Fuzzy Sets and Systems 147 (2004), 453-464 https://doi.org/10.1016/j.fss.2004.02.005
  6. S. Y. Joo and Y. K. Kim, Topological properties on the space of fuzzy sets, J. Math. Anal. Appl. 246 (2000), 576-590 https://doi.org/10.1006/jmaa.2000.6820
  7. S. Y. Joo and Y. K. Kim, Kolmogorov's strong law of large numbers for fuzzy random variables, Fuzzy Sets and Systems 120 (2001), 499-503. https://doi.org/10.1016/S0165-0114(99)00140-2
  8. S. Y. Joo, Y. K. Kim and J. S. Kwon, Strong convergence for weighted sums of fuzzy random sets, submitted
  9. Y. K. Kim, Measurability for fuzzy valued functions, Fuzzy Sets and Systems 129 (2002), 105-109 https://doi.org/10.1016/S0165-0114(01)00121-X
  10. Y. K. Kim, Strong laws of large numbers for random upper semi-continuous fuzzy sets, Bull. Korean Math. Soc. 39 (2002), 511-526 https://doi.org/10.4134/BKMS.2002.39.3.511
  11. Y. K. Kim, Strong laws of large numbers for tight fuzzy random variables, Journal of fuzzy logic and intelligence 13 (2003, 754-758 https://doi.org/10.5391/JKIIS.2003.13.6.754
  12. E. P. Klement, M. L. Puri and D. A. Ralescu, Limit theorems for fuzzy random variables, Proc. Roy. Soc. London Ser. A 407 (1986), 171-182
  13. I. S. Molchanov, On strong laws of large numbers for random upper semi-continuous functions, J. Math. Anal. Appl. 235(1999), 349-355 https://doi.org/10.1006/jmaa.1999.6403
  14. M. L. Puri and D. A. Ralescu, Fuzzy random variables, J. Math. Anal. Appl 114 (1986), 402-422
  15. R. L. Taylor and H. Inoue, A strong law of large numbers for random sets in Banach spaces, Bull. Inst. Math. Academia Sinica 13(1985), 403-409
  16. R. L. Taylor, L. Seymour and Y. Chen, Weak laws of large numbers for fuzzy random sets, Nonlinear Analysis 47(2001), 1245-1256 https://doi.org/10.1016/S0362-546X(01)00262-0
  17. T. Uemura, A law of large numbers for random sets, Fuzzy Sets and Systems 59(1983), 181-188 https://doi.org/10.1016/0165-0114(93)90197-P

Cited by

  1. Weak laws of large numbers for weighted sums of Banach space valued fuzzy random variables vol.13, pp.3, 2013, https://doi.org/10.5391/IJFIS.2013.13.3.215