References
- M. Niedzwieckim, Identification of Time-varying Processes, Wiley, New York, 2000
- R. Haber and L. Keviczky, Nonlinear System Identification-Input-Output Modeling Approach, Kluwer Academic Publishers, 1999
- S. Haykin, Adaptive Filter Theory, 4th Ed., Prentice-Hall, Inc., Englewood Cliffs, NJ, 2002
- M. Niedzwiecki and T. Klaput, 'Fast recursive basis function estimators for identification of time-varying processes,' IEEE Trans. Signal Processing, vol. 50, pp. 1925-1934, Aug. 2002 https://doi.org/10.1109/TSP.2002.800390
- M. Schetzen, The Volterra and Wiener Theories of Nonlinear Systems, John Wiley and Sons, Inc., New York, 1980
- F. Yuan and A. Opal, 'Distortion analysis of periodically switched nonlinear circuits using time-varying Volterra series,' IEEE Trans. Circuits Syst, vol. 48, pp. 726-738, Jun. 2001 https://doi.org/10.1109/81.928155
- W. Yu, S. Sen, and B.S. Leung, 'Distortion analysis of MOS track-and-Hold sampling mixers using time-varying Volterra series,' IEEE Trans. Circuits Syst.-II: Analog and Digital Signal Proc, vol. 46, no. 2, pp. 101-113, Feb. 1999 https://doi.org/10.1109/82.752910
- M. Iatrou, T.W. Berger, and V.Z. Marmarelis, 'Modeling of nonlinear nonstationary dynamic systems with a novel class of artificial neural networks,' IEEE Trans. Neural Networks, vol. 10, no. 2, pp. 327-339, Mar. 1999 https://doi.org/10.1109/72.750563
- V.J. Mathews and G.L. Sicuranza, Polynomial Signal Processing, John Wiley & Sons, Inc., 2000
- V.J. Mathews, 'Adaptive polynomial filters,' IEEE Signal Proc. Mag., vol. 8, no. 3, pp. 10-26, Jul. 1991 https://doi.org/10.1109/79.127998
- M. Niedzwiecki, 'First-order tracking properties of weighted least squares estimators,' IEEE Trans. Automat. Contr., vol. 33, pp. 94-96, Jan. 1988 https://doi.org/10.1109/9.365