DOI QR코드

DOI QR Code

Vaporization Characteristics of Supercritical Hydrocarbon Fuel Droplet in Convective Nitrogen Environments

유동이 있는 초임계 질소 환경에서 탄화수소 연료 액적의 기화 특성

  • 임종혁 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 이봉수 (한국항공대학교 대학원 항공우주 및 기계공학과) ;
  • 구자예 (한국항공대학교 항공우주 및 기계공학부)
  • Published : 2004.10.01

Abstract

The vaporization characteristics of a liquid heptane droplet in a supercritical nitrogen flow are numerically studied. The transient conservation equations of mass, momentum, energy, and species are expressed in an axisymmetric coordinate system. The governing equations are solved time marching method with preconditioning scheme. The modified Soave-Redlich-Kwong equation of state is employed for taking account of real gas effects such as thermodynamic non-ideality and transport anomaly. Changing the convective velocity and ambient pressure, several parametric studies are conducted. The numerical results show that the two parameters, Reynolds number and dimensionless combined parameter(${\mu}$s/${\mu}$d)(equation omitted), have influence on supercritical droplet vaporization.

Keywords

References

  1. Haywood, R. J., Nafziger, R. and Renksizbulut, M., 1989, 'A Detailed Examination of Gas and Liquid Phase Transient Processes in Convective Droplet Evaporation,' Journal of Heat Transfer, Vol. 111, pp. 495-502 https://doi.org/10.1115/1.3250704
  2. Chiang, C. H., Raju, M. S. and Sirignano, W. A., 1992, 'Numerical Analysis of Convecting, Vaporizing Fuel Droplet with Variable Properties,' International Journal of Heat and Mass Transfer, Vol. 35 No.5, pp. 1307-1324 https://doi.org/10.1016/0017-9310(92)90186-V
  3. Deng, Z. T. and Jeng, S., 1992, 'Numerical Simulation of Droplet Deformation in Convective Flows,' AIAA Journal, Vol. 30, No.5, pp. 1290-1297 https://doi.org/10.2514/3.11063
  4. Hsiao, G. C., 1995, 'Supercritical Droplet Vaporization and Combustion in Quiescent and Forced-Convective Environments,' Ph. D. thesis, The Pennsylvania State University, University Park, PA.
  5. Ely, J. F. and Hanley, H. J., 1981, 'Prediction of Transport Properties. 1. Viscosity of Fluids and Mixtures,' Industrial and Engineering Chemistry Fundamentals, Vol. 20, pp. 323-332 https://doi.org/10.1021/i100004a004
  6. Ely, J. F. and Hanley, H. J., 1983, 'Prediction of Transport Properties. 2. Thermal Conductivity of Pure Fluids and Mixtures,' Industrial and Engineering Chemistry Fundamentals, Vol. 22, pp. 90-97 https://doi.org/10.1021/i100009a016
  7. Takahashi, S., 1974, 'Preparation of a Generalized Chart for the Diffusion Coefficients of Gases at High Pressures,' Journal of Chemical Engineering(Japan), Vol. 7, No.6, pp. 417-420
  8. Hua Meng, 2001, 'Liquid-Fuel Droplet Vaporization and Cluster Behavior at Supercritical Conditions,' Ph. D. thesis, The Pennsylvania State University
  9. Hinze, J. O., 1995, 'Fundamentals of the Hydrodynamic Mechanism of Splitting in Dispersion Processes,' A. I. Ch. E. Journal, Vol. 1, No.3, pp. 289-295 https://doi.org/10.1002/aic.690010303
  10. Ranger, A. A. and Nicholls, J. A., 1969, 'Aerodynamic Shattering of Liquid Drops,' AIAA Journal, Vol. 7, No.2, pp. 285-290 https://doi.org/10.2514/3.5087
  11. Wierzba, A. and Takayama, K., 1988, 'Experimental Investigation of the Aerodynamic Breakup of Liquid Drops,' AIAA Journal, Vol. 26, No. 11, pp. 1329-1335 https://doi.org/10.2514/3.10044
  12. Pilch, M. and Erdman, C. A., 1987, 'Use of Breakup Time Data and Velocity History Data to Predict the Maximum Size of Stable Fragments for Acceleration-Induced Breakup of a Liquid Drop,' International Journal of Multiphase Flow, Vol. 13, No.6, pp. 741-757 https://doi.org/10.1016/0301-9322(87)90063-2
  13. Hsiang, L. P. and Faeth, G. M., 1992, 'Near-Limit Drop Deformation and Secondary Breakup,' International Journal of Multiphase Flow, Vol. 18, No.5, pp. 635-652 https://doi.org/10.1016/0301-9322(92)90036-G
  14. Lee, K. J., Lee, B. S., Kim, J. H. and Koo, J. Y., 2003, 'Vaporization of Hydrocarbon Fuel Droplet in Supercritical Environments,' Journal of the Korean Society for Aeronautical and Space Science, Vol. 31, No.7. pp 85-93 https://doi.org/10.3795/KSME-B.2004.28.10.1279
  15. Choi, Y. H. and Merkle, C. L., 1993, ' The Application of Viscous Flows,' Journal of Computational Physics, Vol. 105, pp. 207-223 https://doi.org/10.1006/jcph.1993.1069
  16. Graboski, M. S. and Daubert, T. E., 1978, 'A Modified Soave Equation of State for Phaes Equilibrium Calculation, 1. Hydrocarbon Systems,' Industrial and Engineering Chemistry Process Design. and Development, Vol. 17, No.4, pp. 443-448 https://doi.org/10.1021/i260068a009
  17. Magarvey, R. H. and Bishop, R. L., 1961, 'Transition Ranges for Three-Dimensional Wakes,' Canadian Journal of Physics, Vol. 39, pp. 1418-1422 https://doi.org/10.1139/p61-169
  18. Sakamoto, H. and Haniu, H., 1995, 'The Formation Mechanism and Shedding Frequency of Vortices from a Sphere in a Uniform Shear Flow,' Journal of Fluid Mechanics, Vol. 287, pp. 151-171 https://doi.org/10.1017/S0022112095000905
  19. Ormieres, D. and Provansal, M., 1999, 'Transition to Turbulence in the Wake of a Sphere,' Physical Review Letters, Vol. 83, pp. 80-83 https://doi.org/10.1103/PhysRevLett.83.80