Partially Evaluated Genetic Algorithm based on Fuzzy Clustering

퍼지 클러스터링 기반의 국소평가 유전자 알고리즘

  • 유시호 (연세대학교 컴퓨터과학과) ;
  • 조성배 (연세대학교 컴퓨터과학과)
  • Published : 2004.09.01

Abstract

To find an optimal solution with genetic algorithm, it is desirable to maintain the population sire as large as possible. In some cases, however, the cost to evaluate each individual is relatively high and it is difficult to maintain large population. To solve this problem we propose a novel genetic algorithm based on fuzzy clustering, which considerably reduces evaluation number without any significant loss of its performance by evaluating only one representative for each cluster. The fitness values of other individuals are estimated from the representative fitness values indirectly. We have used fuzzy c-means algorithm and distributed the fitness using membership matrix, since it is hard to distribute precise fitness values by hard clustering method to individuals which belong to multiple groups. Nine benchmark functions have been investigated and the results are compared to six hard clustering algorithms with Euclidean distance and Pearson correlation coefficients as fitness distribution method.

유전자 알고리즘은 원하는 최적해를 찾기 위해서 개체 집단의 크기를 가능한 크게 유지하여야 한다. 하지만 실제 문제에서 개체의 적합도를 평가하는 것이 어려운 경우가 많기 때문에 큰 집단의 모든 개체에 대하여 적합도를 평가하는 것은 많은 시간과 비용을 요구한다. 이에 본 논문에서는 집단의 크기를 크게 유지하되 클러스터링에 의해 대표 개체만을 평가함으로써 효율을 높이는 퍼지 글러스터링 기반의 국소 평가 유전자 알고리즘을 제안한다. 나머지 개체들은 대표 개체로부터 간접적으로 적합도를 분배받는다. 다수의 집단에 소속되는 개체들의 경우, 하드 클러스터링 방법으로는 정확한 적합도 분배를 하기 어렵기 때문에 퍼지 c-means 알고리즘을 사용하였고, 클러스터 결과인 퍼지 소속 행렬에 의해 적합도를 배분하였다. 9개의 벤치마크 적합도 함수에 대하여 6가지 하드 클러스터링 알고리즘을 적용한 유클리디안 거리와 피어슨 상관계수에 의한 적합도 배분 방법과 본 논문에서 제안하는 방법을 비교 실천한 결과, 제안한 방법의 우수한 성능을 확인할 수 있었다.

Keywords

References

  1. L. Chamber, Practical Handbook of Genetic Algorithm, CRC Press, 1995
  2. S.-B. Cho, and J.-Y. Lee, 'A human-oriented image retrieval system using interactive genetic algorithm,' IEEE Trans. Systems, Man, and Cybernetics, vol. 32, no. 3.pp. 452-458, May 2002 https://doi.org/10.1109/TSMCA.2002.802812
  3. H. Takagi, 'Interactive evolutionary computation: Fusion of the capabilities of EC optimization and human evaluation,' Proc. of the IEEE, vol. 89, no. 9, pp. 1275-1296, 2001 https://doi.org/10.1109/5.949485
  4. R. Shonkwiler, F. Mendivil, and A. Deliu, 'Genetic algorithms for the 1-D fractal inverse problem,' Proc. 4th Int'l Conf. on Genetic Algorithms, San Diego, pp. 495-501, July 1991
  5. M. V. Mannino and M. V. Koushik, 'The cost minimizing inverse classification problem: A genetic algorithm approach,' Decision Support Systems, vol. 29, pp. 283- 300, October 2000 https://doi.org/10.1016/S0167-9236(00)00077-4
  6. M. Shibuya, H. Kita, and S. Kobayashi, 'Integration of multi-objective and interactive genetic algorithms and its application to animation design,' Proc. 99' Int'l Conf. on Systems, Man, and Cybernetics, vol. 3, pp. 646-651, 1999 https://doi.org/10.1109/ICSMC.1999.823289
  7. F. Sugimoto, and M. Yoneyama, 'Hybrid fitness assignment strategy in IGA,' Proc. IEEE Workshop on Multimedia Siganl Processing, pp. 284-287. Dec. 2002
  8. H.-S. Kim and S.-B. Cho, 'An efficient genetic algorithm with less fitness evaluation by clustering,' Proc. 2001 IEEE Congress on Evolutionary Computation, pp, 887-894. May 2001 https://doi.org/10.1109/CEC.2001.934284
  9. D. E. Goldgerg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Publication. 1989
  10. R. Eberhart, P. Simpson. and R. Dobbins, Computational Intelligence PC Tools, Waite Group Press, 1996
  11. C. Fraley and A. E. Raftery, 'How many clusters? which clustering method? answers via model-based cluster analysis,' The Computer Journal. vol. 41, pp. 578-588, 1998 https://doi.org/10.1093/comjnl/41.8.578
  12. B. K. Lavine, 'Clustering and classification of analytical data,' Encyclopedia of Analytical Chemistry, October 2000
  13. R. O. Duda, P. E. Hart and D. G. Stock, Pattern Classification, Wiley-Interscience Publication, 2001
  14. D. Wishart, 'Efficient hierarchical cluster analysis for data mining and knowledge discovery,' Computing Science and Statistics, pp. 257-263, 1998
  15. D. Wishart, 'K -means clustering with outlier detection, mixed variables and missing values,' Proc. Conference of the German Classification Society, pp. 14-16, 2001
  16. I. Gath and A.B. Geva, 'Unsupervised optimal fuzzy clustering,' IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 773-781, 1989 https://doi.org/10.1109/34.192473
  17. D. Qzdemir and L. Akron, 'A fuzzy algorithm for color quantization of images,' Pattern Recognition, vol. 35, no. 8, pp. 1785-1791, 2002 https://doi.org/10.1016/S0031-3203(01)00170-4
  18. J. C. Bezdek, Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum Press, 1981
  19. F. Hoppner, F. Klawonn, R. Kruse and T. Runkler, Fuzzy Cluster Analysis, Wiley, 2000
  20. C. Park and S.-B. Cho, 'Evolutionary computation for optimal ensemble classifier in Lymphoma cancer,' Lecture Notes in Comp. Sci, vol. 2871, pp. 521-530, Oct, 2003 https://doi.org/10.1007/b14019
  21. Xin Yao, Yong Liu, and G. Lin, 'Evolutionary Programming Made Faster', IEEE Trans. on Evolutionary Computation, Vol. 3, No. 2, pp. 82-102, July 1999 https://doi.org/10.1109/4235.771163