치매 환자에서 기능 영상법의 역할

The Role of Functional Imaging Techniques in the Dementia

  • 유영훈 (연세대학교 의과대학 진단방사선과학교실 핵의학과)
  • Ryu, Young-Hoon (Division of Nuclear Medicine, Department of Diagnostic Radiology, College of Medicine, Yonsei University)
  • 발행 : 2004.06.30

초록

Evaluation of dementia in patients with early symptoms of cognitive decline is clinically challenging, but the need for early, accurate diagnosis has become more crucial, since several medication for the treatment of mild to moderate Alzheimer' disease are available. Many neurodegenerative diseases produce significant brain function alteration even when structural imaging (CT or MRI) reveal no specific abnormalities. The role of PET and SPECT brain imaging in the initial assessment and differential diagnosis of dementia is beginning to evolve vapidly and growing evidence indicates that appropriate incorporation of PET into the clinical work up can improve diagnostic and prognostic accuracy with respect to Alzheimer's disease, the most common cause of dementia in the geriatric population. in the fast few years, studios comparing neuropathologic examination with PET have established reliable and consistent accuracy for diagnostic evaluations using PET - accuracies substantially exceeding those of comparable studies of diagnostic value of SPECT or of both modalities assessed side by side, or of clinical evaluations done without nuclear imaging. This review deals the role of functional brain imaging techniques in the evaluation of dementias and the role of nuclear neuroimaging in the early detection and diagnosis of Alzheimer's disease.

키워드

참고문헌

  1. Small GW, Rabins PV, Barry PP, et al. Diagnosis and treatment of Alzheimer disease and related disorders: consensus statement of the American Association for Geriatric Psychiatry, the Alzheimer's Association, and the American Geriatrics Society. JAMA 1997; 278:1363-71 https://doi.org/10.1001/jama.278.16.1363
  2. Albert MS, Drachman DA. Alzheimer's disease: what is it, how many people have it, and why do we need to know? Neurology 2000;56:166-8
  3. Ueda K, Kawano H, Hasuo Y, Fujishima M. Prevalence and etiology of dementia in a Japanese community. Stroke 1992;23: 798-803 https://doi.org/10.1161/01.STR.23.6.798
  4. Woo JI, Lee JH, Yoo KY, Kim CY, Kim YI, Shin YS. Prevalence estimation of dementia in rural area of Korea. J Am Geriatr Soc 1998;46:983-87
  5. Devous MD. Functional brain imaging in the dementias: role in early detection, differential diagnosis, and longitudinal studies. Eur J Nucl Med 2002;29:1685-96 https://doi.org/10.1007/s00259-002-0967-2
  6. Minoshima S. Imaging Alzheimer’'s disease: clinical applications. Neuroimaging Clin N Am 2003;13:769-80 https://doi.org/10.1016/S1052-5149(03)00099-6
  7. Knapp MJ, Knopman DS, Solomon PR, Pendlebury WW, Davis CS, Gracon SI. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer's disease. The Tacrine Study Group. JAMA 1994;271:985-91
  8. Rogers SL, Friedhof LT. The efficacy and safety of donepezil in patients with Alzheimer's disease: results a US multi-center, randomized, double-blind, placebo-controlled trial. Dementia 1996; 7:293-303
  9. Silverman DHS, Gambhir SS, Huang HC, Schwimmer J, Kim S, Small GW, et al. Evaluating early dementia with and without assessment of regional cerebral metabolism by PET: a comparison of predicted costs and benefits. J Nucl Med 2002;43:253-66
  10. Kadekaro M, Crane AM, Sokoloff L. Differential effects of electrical stimulation of sciatic nerve on metabolic activity in spinal cord and dorsal root ganglion on the rat. Proc Natl Acad Sci USA 1985;82:6010-3 https://doi.org/10.1073/pnas.82.17.6010
  11. Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol (Berl) 1991;82:239-59 https://doi.org/10.1007/BF00308809
  12. Masliah E, Terry RD, Alford M, DeTeresa R, Hansen LA. Cortical and subcortical patterns of synaptophysin like immunoreactivity in Alzheimer’'s disease. Am J Pathol 1991;138:235-46
  13. Silverman DHS. Brain $^{18}F$-FDG PET in the diagnosis of neurodegenerative dementias: comparison with perfusion SPECT and with clinical evaluations lacking nuclear imaging. J Nucl Med 2004;45:594-607
  14. Victoroff J, Mack WJ, Lyness SA, et al. Multicenter clinicopathological correlation in dementia. Am J Psychiatr 1995;152:1476-84 https://doi.org/10.1176/ajp.152.10.1476
  15. Pucci E, Belardinelli N, Regnicolo L, et al. Hippocampus and parahippocampal gyrus linear measurements based on magnetic resonance in Alzheimer's disease. Eur Neurol 1998;39:16-25 https://doi.org/10.1159/000007893
  16. Jack CR Jr, Petersen RC, Xu YC, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer's disease. Neurology 1997;49:786-94 https://doi.org/10.1212/WNL.49.3.786
  17. Reiman EM, Uecker A, Caselli RJ, Bandy D, de Leon MJ, De Santi S, et al. Hippocampal volumes in cognitively normal persons at genetic risk for Alzheimer's disease. Ann Neurol 1998;44:288-91 https://doi.org/10.1002/ana.410440226
  18. Valenzuela MJ, Sachdev P. Magnetic resonance spectroscopy in AD. Neurology 2001;56:592-8 https://doi.org/10.1212/WNL.56.5.592
  19. Schuff N, Amend D, Ezekiel F, et al. Changes of hippocampal N-acetyl aspartate and volume in Alzheimer's disease. Neurology 1997;49:1513-21 https://doi.org/10.1212/WNL.49.6.1513
  20. Rose S, de Zubicaray G, Wang D, et al. A 1H MRS study of probable Alzheimer's disease and normal aging: implications for longitudinal monitoring of dementia progression. Magn Reson Imaging 1999;17:291-9 https://doi.org/10.1016/S0730-725X(98)00168-4
  21. Parnetti L, Tarducci R, Presciutti O, et al. Proton magnetic resonance spectroscopy can differentiate Alzheimer's disease from normal aging. Mech Aging Dev 1997;97:9-14 https://doi.org/10.1016/S0047-6374(97)01877-0
  22. Doraiswamy M, Charles C, Krishnan R. Prediction of cognitive decline in early Alzheimer's disease. Lancet 1998;352:1678
  23. Silverman DHS, Small GW, Phelps ME. Clinical value of neuroimaging in the diagnosis of dementia: sensitivity and specificity of regional cerebral metabolic and other parameters for early identification of Alzheimer's disease. Clin Positron Imaging 1999;2:119-30 https://doi.org/10.1016/S1095-0397(99)00020-5
  24. Mielke R, Heiss WD. Positron emission tomography for diagnosis of Alzheimer's disease and vascular dementia. J Neural Transm 1998;53(Suppl): 237-50
  25. Jagust WJ, Thisted R, Devous MD Sr, Van Heertum R, Mayberg H, Jobst K, et al. SPECT perfusion imaging in the diagnosis of Alzheimer's disease: a clinical pathologic study. Neurology 2001;56: 950-6 https://doi.org/10.1212/WNL.56.7.950
  26. Bonte FJ, Weiner MF, Bogio EH, White CL III. Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. Radiology 1997;202:793-7 https://doi.org/10.1148/radiology.202.3.9051035
  27. Sayit E, Yener G, Capa G, Ertay T, Kenshin B, Fadiloglu S, et al. Basal and activational $^{99m}Tc$-HMPAO brain SPECT in Alzheimer's disease. Nucl Med Commun 2000;21:763-8 https://doi.org/10.1097/00006231-200008000-00010
  28. Kang H, Lee DS, Kang E, Lee JS, Yeo JS, Kim JY, et al. Relationship between brain perfusion SPECT and MMSE score in dementia of Alzheimer''s type: a statistical parametric mapping analysis. Korean J Nucl Med 2002;36:91-101
  29. Kogure D, Matsuda H, Ohnishi T, Asada T, Uno M, Kunihiro T, Nakano S, Takasaki M. Longitudinal evaluation of early Alzheimer's disease in brain perfusion SPECT. J Nucl Med 2000; 41:1155-62
  30. Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, et al. Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 2000;10:120-3 https://doi.org/10.1002/1097-0193(200007)10:3<120::AID-HBM30>3.0.CO;2-8
  31. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 2002;15:273-89 https://doi.org/10.1006/nimg.2001.0978
  32. Lee DS, Lee JS, Kang KW, Jang MJ, Lee SK, Chung JK, et al. Disparity of perfusion and glucose metabolism of epileptogenic zones in temporal lobe epilepsy demonstrated by SPM/SPAM analysis on $^{15}O$ water PET, $^{18}F$ FDG-PET, and $^{99m}Tc$-HMPAO SPECT. Epilepsia 2001;42:1515-22 https://doi.org/10.1046/j.1528-1157.2001.21801.x
  33. MinoshimaS, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’'s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med 1995;36:1238-48
  34. Hoffman J M, Hanson MW, Welsh KA, et al. Interpretation variability of 18FDG positron emission tomography studies in dementia. Invest Radiol 1996;31:316-22 https://doi.org/10.1097/00004424-199606000-00002
  35. Masterman DL, Mendez MF, Fairbanks LA, et al. Sensitivity specificity and positive predictive value of $^{99m}Tc$-HMPAO SPECT in discriminating Alzheimer's disease from other dementias. J Geriatr Psychiatry Neurol 1997;10:15
  36. Hoffman JM, Welsh-Bohmer KA, Hanson M, Crain B, Hulette C, Earl N, Coleman RE. FDG PET imaging in patients with pathologically verified dementia. J Nucl Med 2000;41:1920-8
  37. Silverman DH, Small GW, Kung de Aburto MA, et al. Diagnostic accuracy of FDG-PET in evaluation of dementia: international multi-center pooled brain scan and autopsy data. J Nucl Med 2000;41:63P
  38. Herholz K, Schopphoff H, Schmidt M, Mielke R, Eschner W, Scheidhauer K, et al. Direct comparison of spatially normalized PET and SPECT scans in Alzheimer's disease. J Nucl Med 2002;43:21-6
  39. Silverman DHS, Small GW, Chang CY, et al. Positron emission tomography in evaluation of dementia: regional brain metabolism and long-term outcome. JAMA 2001;268:2120-7
  40. Truong C, Czernin J, Chen W, Phelps M, Silverman D. Improving specificity of PET for prognostic evaluation of dementia [abstract]. J Nucl Med. 2002;43(suppl):62P
  41. Bench CJ, Friston KJ, Brown RG, Frackowiak RSJ, Dolan RJ. Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med. 1993;23:579-90 https://doi.org/10.1017/S0033291700025368
  42. Silverman DHS, Geist CL, Van Herle K, et al. Abnormal regional brain metabolism in patients with hypothyroidism secondary to Hashimoto’'s disease [abstract]. J Nucl Med. 2002;43(suppl):254P
  43. Bauer M, Marseille DM, Geist CL, et al. Effects of thyroid hormone replacement therapy on regional brain metabolism. J Nucl Med. 2002;43(suppl):254P
  44. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer's disease. Neurology 1993;43:1467-72 https://doi.org/10.1212/WNL.43.8.1467
  45. Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G. The cause of neuronal degeneration in Alzheimer's disease. Prog Neurobiol 2000;60:139-65 https://doi.org/10.1016/S0301-0082(99)00023-4
  46. Small GW, Mazziotta JC, Collins MT, et al. Apolipo-protein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995;273:942-7 https://doi.org/10.1001/jama.273.12.942
  47. Reiman EM, Caselli RJ, Yun LS, Chen K, Bandy D, Minoshima S. Preclinical evidence of Alzheimer's disease in persons homozygous for the e4 allele for apolipo-protein E. N Engl J Med 1996; 334:752-8 https://doi.org/10.1056/NEJM199603213341202
  48. Okamura N, Arai H, Maruyama M, Higuchi M, Matsui T, Tanji H, et al. Combined analysis of CSF tau levels and $[^{123}I]$iodoamphetamine SPECT in mild cognitive impairment: implications for a novel predictor of Alzheimer's disease. Am J Psychiatry 2002;159:474-6 https://doi.org/10.1176/appi.ajp.159.3.474
  49. Klunk WE, Engler H, Nordberg A, Bacskai BJ, Wang Y, Price JC, et al. Imaging of pathology of Alzheimer’'s disease: amyloid imaging with positron emission tomography. Neuroimag Clin N Am 2003;13:781-9 https://doi.org/10.1016/S1052-5149(03)00092-3
  50. Vickers JC, Dickson TC, Adlard PA, Saunders HL, King CE, McCormack G. The cause of neuronal degeneration in Alzheimer's disease. Prog Neurobiol 2000;60:139-65 https://doi.org/10.1016/S0301-0082(99)00023-4
  51. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer's disease. J Neurosci 2001;21: RC189
  52. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer's disease. Am J Geriatr Psychiatry 2002;10:24-35 https://doi.org/10.1097/00019442-200201000-00004
  53. Ono M, Kung M-P, Hou C, Kung HF. Benzofuran derivatives as A beta-aggregate-specific imaging agents for Alzheimer's disease. Nucl Med Biol 2002;29:633-42 https://doi.org/10.1016/S0969-8051(02)00326-8
  54. Zhuang Z-P, Kung M-P, Hou C, Skovronsky D, Gur TL, Trojanowski JQ, et al. Radioiodinated styrylbenzenes and thioflavins as probes for amyloid aggregates, J Med Chem 2001;44:1905-14
  55. Rinne JO, Kaasinen V, Jarvenpaa T, et al. Brain acetylcholinesterase activity in mild cognitive impairment and early Alzheimer’'s disease. J Neurol. 2003;74:113-5
  56. Morris JC, McKell DW, Storandt M, et al. Very mild Alzheimer’'s disease: informant-based clinical, psychometric, and pathologic distinction from normal aging. Neurology 1991;41:469-7 https://doi.org/10.1212/WNL.41.4.469
  57. Johnson KA, Kijewski MF, Becker JA, Garada B, Satlin A, Holman BL. Quantitative brain SPECT in Alzheimer’'s disease and normal aging. J Nucl Med 1993; 34:2044-8
  58. Salmon E, Sadzot B, Maquet P, et al. Differential diagnosis of Alzheimer’'s disease with PET. J Nucl Med 1994; 35:391-8
  59. Johnson KA, Jones K, Holman BL, et al. Preclinical prediction of Alzheimer’'s disease using SPECT. Neurology 1998; 50:1563-71 https://doi.org/10.1212/WNL.50.6.1563
  60. Jagust WJ, Haan MN, Reed BR, et al. Brain perfusion imaging predicts survival in Alzheimer’'s disease. Neurology 1998;51:1009-13 https://doi.org/10.1212/WNL.51.4.1009
  61. Small GW, Ercoli LM Silverman DHS, et al. Cerebral metabolic and cognitive decline in persons at genetic risk for Alzheimer’'s disease. Proc Natl Acad Sci USA 2000; 97:6037-42 https://doi.org/10.1073/pnas.090106797
  62. Lehtovirta M, Kuikka J, Helisalmi S, Hartikainen P, Mannermas A, Ryynanen M, et al. Longitudinal SPECT study in Alzheimer’'s disease: relation to apolipoprotein E polymorphism. J Neurol Neurosurg Psychiatry 1998; 64:742-6 https://doi.org/10.1136/jnnp.64.6.742