References
- AHMED, S. E., ANTONINI, R. G. AND ANDREI, V. (2002). 'On the rate of complete convergence for weighted sums of arrays of Banach space valued elements with application to moving average processes', Statistics & Probability Letters, 58, 185-194 https://doi.org/10.1016/S0167-7152(02)00126-8
- BAUM, L. E. AND KATZ, M. (1965). 'Convergence rates in the law of large numbers', Transactions of the American Mathematical Society, 120, 108-123 https://doi.org/10.2307/1994170
- BURTON, R. M. AND DEHLING, H. (1990). 'Large deviations for some weakly dependent random processes', Statistics & Probability Letters, 9, 397-401 https://doi.org/10.1016/0167-7152(90)90031-2
- CHEN, P. Y.AND LIU, X. D. (2003). 'A Chover-type law of iterated logarithm for the weighted partial sums', Acta Mathematica Sinica, 46, 999-1006
- GUT, A. (1992). 'Complete convergence for arrays', Periodica Mathematica Hungarica, 25, 51-75 https://doi.org/10.1007/BF02454383
- Hsu, P. L AND ROBBINS, H. (1947). 'Complete convergence and the law of large numbers', Proceedings of the National Academy of Sciences of the United States of America, 33, 25-3l https://doi.org/10.1073/pnas.33.2.25
-
HU, S. H. (1991). A law of the iterated logarithm for double array sums of
\phi -mixing sequence', Chinese Science Bulletin, 36, 1057-1061 - HU, T. C., MORICZ, F. AND TAYLOR, R. L. (1989). 'Strong laws of large numbers for arrays of rowwise independent random variables', Acta Mathematica Hungarica, 54, 153-162 https://doi.org/10.1007/BF01950716
- HU. T. C., ROSALSKY, A., SZYNAL, D. AND VOLODIN, A. (1999). 'On complete convergence for arrays of rowwise independent random elements in Banach spaces', Stochastic Analysis and Applications, 17, 963-992 https://doi.org/10.1080/07362999908809645
- IBRAGIMOV, I. A. (1962). 'Some limit theorems for stationary process', Theory of Probability and Its Applications, 7, 349-382 https://doi.org/10.1137/1107036
- IBRAGIMOV, I. A. AND LINNIK, YU. V. (1971). Independent and Stationary Sequences of Random variables, Walters-Noordhoff, Groningen, Netherlands
- KUCZMASZEWSKA, A. AND SZYNAL, D. (1994). 'On complete convergence in a Banach space', International Journal of Mathematics and Mathematical Sciences, 17, 1-14 https://doi.org/10.1155/S0161171294000013
- LI, D., RAO, M. B. AND WANG, X. (1992). 'Complete convergence of moving average processes', Statistics & Probability Letters, 14, 111-114 https://doi.org/10.1016/0167-7152(92)90073-E
-
LIU, J., CHEN, P. AND GAN, S. (1998). 'The law of large numbers for
\phi -mixing sequence', Journal of Mathematics (Wuhan), 18, 91-95 -
PELIGRAD, M. (1985). 'An invariance principle for
\phi -mixing sequences', The Annals of Probability, 13, 1304-1313 https://doi.org/10.1214/aop/1176992814 -
PELIGRAD, M. (1993). 'Asymptotic results for
\phi -mixing sequences', Doeblin and Modern Probability (Blaubeuren, 1991), 163-169, Contemporary Mathematics, 149, American Mathematical Society, Providence, Rhodes Island -
PRAKASA RAO, B. L. S. (2003). 'Moment inequalities for supremum of empirical processes for
\phi -mixing sequences', Communications in Statistics- Theory and Methods, 32, 1695-1701 https://doi.org/10.1081/STA-120022703 - PRUITT, W. E. (1966). 'Summability of independent random variables', Journal of Mathematics and Mechanics, 15, 769-776
- ROHATGI, V. K. (1971). 'Convergence of weighted sums of independent random variables', Proceeding of the Cambridge Philosophical Society, 69, 305-307 https://doi.org/10.1017/S0305004100046685
- ROUSSAS, G. (1988). 'Nonparametric estimation in mixing sequences of random variables', Journal of Statistical Planning and Inference, 18, 135-149 https://doi.org/10.1016/0378-3758(88)90001-8
- SHAO, Q. M. (1993). 'Almost sure invariance principles for mixing sequences of random variables', Stochastic Processes and Their Applications, 48, 319-334 https://doi.org/10.1016/0304-4149(93)90051-5
- SHAO, Q. M. (1993). 'Almost sure invariance principles for mixing sequences of random variables', Stochastic Processes and Their Applications, 48, 319-334 https://doi.org/10.1016/0304-4149(93)90051-5
- WANG, X., RAO, M. B. AND YANG, X. (1993). 'Convergence rates on strong laws of large numbers for arrays of rowwise independent elements', Stochastic Analysis and Applications. 11. 115-132 https://doi.org/10.1080/07362999308809305