Growth and Physiological Properties of Wild Type and Mutants of Halomonas subglaciescola DH-l in Saline Environment

  • Ryu, Hye Jeong (Department of Biological Engineering, Seokyeong University) ;
  • Jeong, Yoo Jung (Department of Biological Engineering, Seokyeong University) ;
  • Park, Doo Hyun (Department of Biological Engineering, Seokyeong University)
  • 발행 : 2004.09.01

초록

A halophilic bacterium was isolated from fermented seafood. The 16S rDNA sequence identity between the isolate and Halomonas subglaciescola AJ306801 was above 95%. The isolate that did not grow in the condition without NaCl or in the condition with other sodium (Na$\^$+/) or chloride ions (Cl$\^$-/) instead of NaCl was named H. subglaciescola DH-l. Two mutants capable of growing without NaCl were obtained by random mutagenesis, of which their total soluble protein profiles were compared with those of the wild type by two-dimensional electrophoresis. The external compatible solutes (betaine and choline) and cell extract of the wild type did not function as osmoprotectants, and these parameters within the mutants did not enhance their growth in the saline environment. In the proton translocation test, rapid acidification of the reactant was not detected for the wild type, but it was detected for the mutant in the condition without NaCl. From these results, we derived the hypothesis that NaCl may be absolutely required for the energy metabolism of H. subglaciescola DH-l but not for its osmoregulation, and the mutants may have another modified proton translocation system that is independent of NaCl, except for those mutants with an NaCl-dependent system.

키워드

참고문헌

  1. Adams, R., J. Bygraves, M. Kogul, and N.J. Russell. 1987. The role of osmotic effects in haloadaptation of Vibrio costicola. J. Gen. Microbiol. 133, 1861-1870
  2. Boch, J., B. Kempf, and E. Bremer. 1994. Osmoregulation in Bacillus subtilis, synthesis of the osmoprotectants glycine betaine from exogenously provide choline. J. Bacteriol. 176, 5364-5371
  3. Cánovas D., C. Vargas, L.N. Csonka, A. Ventosa, and J.J. Nieto. 1998. Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl. Environ. Microbiol. 64, 4095-4097
  4. Cánavas D., C. Vargas, L.N. Csonka, A. Ventosa, and J.J. Nieto. 1996. Osmoprotectants in Halomonas elongata, high-affinity betaine transport system and choline-betaine pathway. J. Bacteriol. 12, 7221-7226
  5. Choquet, C.G., I. Ahoshai, M. Klein, and D.J. Kushner. 1991. Formation and role of glycine betaine in the moderate halophile Vibrio costicola, site for action of Cl− ions. J. Bacteriol. 171,880-886
  6. Ciulla, R.A., M.R. Diza, B.F. Taylor, and M.F. Roberts. 1997. Organic osmolytes in aerobic bacteria from Mono Lake, an alkaline, moderately hypersaline environment. Appl. Environ. Micrbiol. 63, 220-226
  7. Cummings, S.P. and D.J. Gilmour. 1995. The effect of NaCl on the growth of Halomonas species, accumulation and utilization of compatible solutes. Microbiology 141, 1413-1418
  8. Del Mora, A., J. Severin, A. Ramos-Cormenzana, H.G.Truper, and E.A. Galinski. 1994. Compatible solutes in new moderately halophilic isolates. FEMS Microbiol. Lett. 122, 165-172
  9. Diax, M.R. and B.F. Tayler. 1996. Metabolism of methylated osmolytes by aerobic bacteria from Mono Lake, a moderately alkaline environment. FEMS Microbiol. Ecol. 19, 249-247
  10. Fitz, R.M. and H. Cypionka. 1989. A study on electron trasnportdriven proton translocation in Desulfovibrio desulfuricans. Arch. Microbiol. 152, 369-375
  11. Frings, E., T. Sauer and E.A. Glinski. 1995. Production of hydroxyectoin, high cell-density cultivation and osmotic downshock of Marinococcus strain M52. J. Biotechnol. 43, 53-61
  12. Galinski, E.A. 1995. Osmoadaptation in bacteria. Adv. Microb. Physiol. 19, 273-328
  13. Gadda, G. and E. E. McAllister-Wilkins. 2003. Cloning, Expression, and Purification of Choline Dehydrogenase from the Moderate Halophile Halomonas elongata. Appl. Envir. Microbiol. 69, 2126-2132
  14. Grammann, K., A. Volke, and H.J. Künte. 2002. New type of osmoregulated solute transporter identified in Halophilic members of the Bacteria Domain, TRAP transporter TeaABC mediates uptake of ectoine and hydroxyectoine in Halomonas elongata DSM2581. J. Bacteriol. 184, 3078-3085
  15. Imhoff, J.F. and F. Rodriguez-Valera. 1984. Betaine is the main compatible solute of halophilic eubacteria. J. Bacteriol. 160,478-479
  16. Imhoff, J.F. 1993. Osmotic adaptation in halophilic and halotolerant microorganisms, p. 211-253. In RH. Vreeland and L.I. Hochstein (ed.), The biology of halophilic bacteria. CRC Press, Inc., Boca Raton, Fla
  17. Ishida, Y. Maruyama, R.Y. Morita, and A. Uchida (ed.), recent advances in microbioal ecology. Japan Scientific Societies Press, Tokyo, Japan
  18. Kamekura, M. and H. Omishi. 1982. Cell-associated cations of the moderate halophile Micrococcus varians ssp. Halophilus grown in media of thigh concentration of LiCl, NaCl, KCl, RbCl or CsCl. Can. J. Microbiol. 28, 155-161
  19. Ken-Dror, S., J.K. Lanyi, B. Schobert, B.Silver, and Y. Avi-Dor. 1986. An NADH, quinone oxidoreductase of the halotolerant bacterium Ba1 is specifically dependent on sodium ions. Arch. Biochem. Biophys. 244, 766-772
  20. Ken-Dror, S., R. Preger, and Y. Avi-Dor. 1986. Functional characterization of the uncoupler-insensitive Na+ pump of the halotolerant bacterium, Ba1. Arch. Biochem. Biophys. 244, 122-127
  21. Keneko, T., M.I. Krichevesky, and R.M. Atlas. 1979. Numerical taxonomy of bacteria from the Beaufort sea. J. Gen. Mcribiol. 110, 111-125
  22. Kim, Y.M., I.K. Rhee, M.Y. Park, D.S. Chang, and T. Tsuchiya. 2003. Characterization of Na+-dependent serine transport in Haemophilus influenza Rd. J. Microbiol. 41, 78-82
  23. Kim, Y.M. 2003. Cloning of the gene for Na+/serine-threonine symporter (sstT) from Haemophilus influenza Rd and characterization of the transpoter. J. Microbiol. 41, 202-206
  24. Kushner, D.J. 1989. Halophilic bacteria: their life in and out of salt, P.60-64. In T. Hattori, Y. Ishida, Y. Maruyama, R.Y. Morita, and A. Uchida (ed.), recent advances in microbioal ecology. Japan Scientific Societies Press, Tokyo, Japan.
  25. Mljica, F.J., E. Cisneros, C. Ferrer, F.R. Valera, and G. Juez. 1997. Osmotically induced response in representatives of halophilic prokaryotes, the bacterium Halomonas elongata and the archaeon Haloferax volcanii. J. Bacteriol. 179, 5471-5481
  26. OFarrell, P.H. 1975. High-resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 207-214
  27. Ono, H., K. Sawadas, N. Khunajakr, T. Tao, M. Yamamoto, M. Hiramoto, A. Shinmyo, M. Takano, and Y. Murooka. 1999. Characterization of biosynthetic enzymes for ectoine as a compatible solute in a moderately halophilic eubacterium, Halomonas elongata. J. Bacteriol. 181, 91-99
  28. Orea, A. 1990. Estimation of the contribution of halobacteria to the bacterial biomass and activity in a solar saltern by the use of bile salts. FEMS Microbiol. 73,41-48
  29. Prabhu, J., F. Schauwecker, N. Grammel, U. Keller, and M. Bernhard. 2004. Functional Expression of the Ectoine Hydroxylase Gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl. Envir. Microbiol. 70, 3130-3132
  30. Ventosa, A., J.J. Nieto and A. Oren. 1998. The biology of moderately halophilic aerobic bacteria. Microbiology and Molecular Biology Reviews 62, 504-544
  31. Vreeland, R.H., C.D. Litchfield, E.L. Martia, and E. Elliot. 1980.Halomonas elongata, a new genus and species of extremely halotolerant bacteria. Int. J. Syst. Bacteriol. 30, 485-495
  32. Vreeland, R.H. and E.L.Martia. 1980. Growth characteristics, effects of temperature, and ion specificity of the halotolerant bacterium Halomonas elongata. Can. J. Microbiol. 26, 746-752