과학적 창의성과 과학영재교육의 방향

Directions of Science Education for the Gifted and Scientific Creativity

  • 발행 : 2004.03.01

초록

과학교육은 학생들의 과학적 태도, 탐구능력, 문제 해결력 등을 함양하여 21세기의 격변하는 사회에 적응할 수 있도록, 과학적 소양을 갖춘 창의적 인적자원의 기반을 마련해야 하는 시점에 도달했다고 볼 수 있다. 이에 본 논문에서는 과학교육 목표에서 제시된 과학적 창의성과 과학적 소양을 논의하고 21세기 현대 과학의 특징을 고찰한 후, 미래 첨단과학기술 사회 발전의 핵심이 되는 과학적 창의성을 신장시키는 과학영재교육의 방향을 제안하고자 했다. 논의한 바와 같이 과학적 소양에 기반을 과학적 창의성을 추구하는 과학교육의 방향은, 첫째, 과학기술의 내용을 도입하며, 둘째, 통합적 과학 개념을 도입하고, 셋째, 개인$.$사회적 관점을 강조하고 넷째, 사회 문제 해결 중심의 탐구과정을 강조한다. 특히 과학영재교육을 통해 강조해야 할 탁월한 과학적 창의성은 첫째, 구체화된 자료를 전체적 관점에서 상상력을 적용하여 해석하고, 둘째, 과학적 과정에 예술적 관점을 적용하며, 셋째, 직관적 관점에서 과학의 현상을 해석하고 넷째, 개인적 만족감을 추구하는 데서 발휘된다. 과학수업에서 학생들이 이상과 같은 요소들을 경험할 수 있을 때 과학적 창의성 신장 과학교육과학영재교육이 실현된다고 볼 수 있다.

The article attempts to suggest s a direction of science education in terms of development of creative human resources based on discussion about scientific literacy and scientific creativity. Students are supposed to develop scientific attitude, inquiry skills, problem solving ability through science learning, and be prepared for the 21st century of rapidly developing age. The paper introduces definitions of scientific literacy and scientific creativity and discuss their meanings within science education in general as well as for the gifted. To enhance students' scientific creativity, science education should strengthen content of science related to technology, integrated science content, personal and social views, social inquiry for problem solving. In particular, science education for the gifted should emphasize students' holistic views in interpreting data, ability to connect artistic aspects to science process, intuitions to explain scientific phenomena and pursue of personal satisfaction. It may be said that science education and science education for the gifted is realized when students have opportunities to experience such elements in their science learning.

키워드

참고문헌

  1. 교육부. (1997). 과학과 교육과정. 교육부
  2. Barron, F. (1969). The creative person and the creative process. New York: Holt, Rinehart and Winston
  3. Bybee, R, & DeBoer, G. (1994). Goals for the science curriculum. In Handbook of Research in Science Teaching and Learning (pp. 357-387). Washington, DC: National Science Teachers Association
  4. Csikszentmihalyi, M., & Wolfe, R (2000). New conceptions and research approaches to creativity: Implications of a systems perspective for creativity in education. In: K. Heller, F. Monks, R Sternberg, & R Subotnik (eds.), International handbook for research on giftedness and talent (pp. 81-93). Oxford: Pergamon
  5. Gardner, H. (1993). Creating mind. New York: Basic Books
  6. Heller, K. (2002). Identifying and nurturing the gifted in math, science and technology. In Proceedings of International Conference on Education for the Gifted in Science (pp. 51-90). Korean Society for the Gifted: Seoul
  7. Hurd, P. (1997). Inventing science edumtion for the new millennium. New York: Teachers College Press
  8. Hurd, P. (1998). Scientific literacy: New minds for a changing world. Science Education, 82(3), 407-416. https://doi.org/10.1002/(SICI)1098-237X(199806)82:3<407::AID-SCE6>3.0.CO;2-G
  9. Hurd, P. (2000). Science education for the 21st century. School Science and Mathematics, 100(6), 282-288 https://doi.org/10.1111/j.1949-8594.2000.tb17321.x
  10. Innamorato, G. (1998). Creativity In the development of scientific giftedness: Educational implications. Roeper Review, 21(1), 54-58. https://doi.org/10.1080/02783199809553932
  11. Katz, A. (1984). Creative styles: Relating tests of creativity to the work patterns of scientists. Personality and Individual Differences, 5, 281-292 https://doi.org/10.1016/0191-8869(84)90067-9
  12. Lubart, T., & Sternberg, R (1998). Creativity across time and place: Life span and cross-cultural perspectives. High Ability Studies, 9(1), 59-74 https://doi.org/10.1080/1359813980090105
  13. Meador, K. (2003). Thinking creatively about science: Suggestions for primary teachers. Gifted Child Today, 26(1), 25-29 https://doi.org/10.4219/gct-2003-93
  14. Michalko, M. (1998). Thinking like a genius: Eight strategies used by the supercreative from Aristotle and Leonardo to Einstein and Edison. Futurist, 32(4), 21-25
  15. Miller, A. (2000). Insights of genius. Cambridge, MA: MIT Press
  16. National Research Council. (1996). National Science Education Standards. National Academy Press: Washington DC
  17. Simonton, D. (1988). Scientific genius; A psychology of science. New York: Cambridge University Press
  18. Trost, G. & Sieglen, J. (1992). Biographical early indicators of vocational success. In E.A. Hany & H. Nickel (Eds.), Giftedness (pp. 95-104). Bern: Huber
  19. Taylor, C., & Barron, F. (1963). Scientific creativity: Its recognition and development. New York: John Wiley & Sons, Inc
  20. Yager, R. (2000). A vision for what science education should be like for the first 25 years of a new millennium. School Science and Mathematics, 100(6), 327-341 https://doi.org/10.1111/j.1949-8594.2000.tb17327.x