DOI QR코드

DOI QR Code

Astaxanthin Biosynthesis in Transgenic Arabidopsis by Using Chyb Gene Encoding β-Carotene Hydroxylase

β-Carotene Hydroxylase 관련 Chyb 유전자를 이용한 형질전환 Arabidopsis에서 Astaxanthin의 생합성

  • Published : 2004.09.01

Abstract

Oxycarotenoids are oxygenated carotenoids that perform critical roles in plants. $\beta$-Carotene hydroxylase adds hydroxyl groups to the $\beta$-rings of carotenes and has been cloned from several bacteria and plants including Arabidopsis. This study was carried out to investigate the effect of $\beta$-carotene hydroxylase gene (Chyb) on the oxycarotenoids biosynthesis in the transgenic Arabidopsis. Construct of pGCHYB containing Chyb was established onto Gateway vector system (pENTR3C gateway vector and pH2GW7 destination vector). Arabidopsis thaliana (cv. Columbia) was transformed with Agrobacterium tumerfacience GV3101 harboring pGCHYB construct driven by 35S promoter and hygromycin resistant gene. Seven hundred bases paired PCR products, indicating the presence of Chyb gene, were found in the transformants by PCR analysis using Chyb primers. Hygromycin resistance assay showed that transgenes were stably inherited to next generation. The overexpression of the Chyb gene resulted in the decrease carotenoid content. Especially, astaxanthin unusual oxycarotenoid in wild type Arabidopsis was detected in the transgenic plants. This means that decreased carotenoids might be converted into astaxanthin metabolism with the aid of silent gene in the host.

Oxycarotenoids는 녹색식물, 곰팡이, 효모, 버섯 및 세균 등이 만들어 내는 황색, 적색 또는 자색의 polyene계 색소로 분자내에 산소를 함유하며 생체내에서 중요한 역할을 담당하고 있다. 본 실험에서는 Oxycarotenoids의 생합성 경로상에 존재하는 $\beta$-carotene hydroxylase 유전자 (Chyb)가 재조합된 Ti-plasmid (pGCHYB)를 A. tumerfacience GV3101에 의해 Arabidopsis thaliana (cv. Columbia)에 형질전환하였다. 50 mg/L hygromycin 함유한 MS 배지에서 선발된 개체를 이용하여 Chyb 유전자의 도입여부를 PCR로 분석한 결과, 대조구에서는 Chyb 유전자의 증폭 되지 않았으나 형질전환체에서는 증폭 산물을 확인 할 수 있었다. 또한 형질전환체의 발현여부를 RT-PCR분석한 결과 도입된 Chyb 유전자가 안정적으로 발현되었다. 형질전환체의 carotenoids를 HPLC 분석한 결과 xanthophyll cycle carotenoids (violaxanthin과 zeaxanthin)의 함량 및 $\beta$-carotene 함량은 감소되었으며, 대조구 Arabidopsis에는 생합성되지 않는 astaxanthin이 생합성되었다. 따라서 본 실험에서 육성된 형질전환체를 이용하여 oxycarotenoids 생합성 과정상의 중간대사물질의 표지, 관여된 transcript 및 metabolite 분석 등을 통해 carotenoids 대사계의 연구소재로 활용 할 수 있을 것으로 기대한다.

Keywords

References

  1. Bone RA, Landrum JT, Guerra LH, Ruiz CA (2003) Lutein and zeaxanthin dietary supplements raise macular pigment density and serum concentrations of these carotenoids in humans. J Nutr 133: 992-998 https://doi.org/10.1093/jn/133.4.992
  2. Bouvier F, Keller Y, d'Harlingue A, Camara B (1998) Xanthophyll biosynthesis: molecular and functional characterization of carotenoid hydroxylases from pepper fruits (Capsicum annuum L.). Biochim Biophys Acta 1391: 320-328 https://doi.org/10.1016/S0005-2760(98)00029-0
  3. Breitenbach J, Misawa N, Kajiwara S, Sandmann G (1996) Expression in Escherichia coli and properties of the carotene ketolase from Haematococcus pluvialis. FEMS Microbiol Lett 140: 241-246 https://doi.org/10.1111/j.1574-6968.1996.tb08343.x
  4. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735-743 https://doi.org/10.1046/j.1365-313x.1998.00343.x
  5. Curran-Celentano J, Hammond BR, Jr., Ciulla TA, Cooper DA, Pratt LM, Danis RB (2001) Relation between dietary intake, serum concentrations, and retinal concentrations of lutein and zeaxanthin in adults in a Midwest population. Am J Clin Nutr 74: 796-802 https://doi.org/10.1093/ajcn/74.6.796
  6. Davison PA, Hunter CN, Horton P (2002) Overexpression of beta-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418: 203-2066 https://doi.org/10.1038/nature00861
  7. Fraser PD, Pinto ME, Holloway DE, Bramley PM (2000) Technical advance: application of high-performance liquid chromatography with photodiode array detection to the metabolic profiling of plant isoprenoids. Plant J 24: 551-558 https://doi.org/10.1046/j.1365-313x.2000.00896.x
  8. Gale CR, Hall NF, Phillips DI, Martyn CN (2003) Lutein and zeaxanthin status and risk of age-related macular degeneration. Invest Ophthalmol Vis Sci 44: 2461-2465 https://doi.org/10.1167/iovs.02-0929
  9. Gallagher CE, Cervantes-Cervantes M, Wurtzel ET (2003) Surrogate biochemistry: use of Escherichia coli to identify plant cDNAs that impact metabolic engineering of carotenoid accumulation. Appl Microbiol Biotechnol 60: 713-719 https://doi.org/10.1007/s00253-002-1182-6
  10. Gann PH, Ma J, Giovannucci E, Willett W, Sacks FM, Hennekens CH, Stampfer MJ (1999) Lower prostate cancer risk in men with elevated plasma lycopene levels: results of a prospective analysis. Cancer Res 59: 1225-1230
  11. Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J Natl Cancer Inst 91: 317-331 https://doi.org/10.1093/jnci/91.4.317
  12. Giuliano G, Aquilani R, Dharmapuri S (2000) Metabolic engineering of plant carotenoids. Trends Plant Sci 5: 406-409 https://doi.org/10.1016/S1360-1385(00)01749-0
  13. Gotz T, Sandmann G, Romer S (2002) Expression of a bacterial carotene hydroxylase gene (crtZ) enhances UV tolerance in tobacco. Plant Mol Biol 50: 129-142
  14. Harker M, Hirschberg J (1997) Biosynthesis of ketocarotenoids in transgenic cyanobacteria expressing the algal gene for beta-C-4-oxygenase, crtO. FEBS Lett 404: 129-134 https://doi.org/10.1016/S0014-5793(97)00110-5
  15. Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4: 210-218 https://doi.org/10.1016/S1369-5266(00)00163-1
  16. Kang B, Park Y (2001) Effect of antibiotics and herbicide on shoot regeneration from cotyledon and hypocotyl explants of chinese cabbage. Kor J Hort Sci Technol 19: 17-21
  17. Kim Y, Soh W, Suh M, Hong C (1993) Transformation of Tobacco(Nicotiana tabacum) for Hygromycin-resistance. Korean J. Plant Tiss Cult 20: 103-107
  18. Kotake-Nara E, Kushiro M, Zhang H, Sugawara T, Miyashita K, Nagao A (2001) Carotenoids affect proliferation of human prostate cancer cells. J Nutr 131: 3303-3306 https://doi.org/10.1093/jn/131.12.3303
  19. Ladygin VG (2000) Biosynthesis of carotenoids in plastids of plants. Biochemistry (Mosc) 65: 1113-1128
  20. Lotan T, Hirschberg J (1995) Cloning and expression in Escherichia coli of the gene encoding beta-C-4-oxygenase, that converts beta-carotene to the ketocarotenoid canthaxanthin in Haematococcus pluvialis. FEBS Lett 364: 125-128 https://doi.org/10.1016/0014-5793(95)00368-J
  21. Mann V, Harker M, Pecker I, Hirschberg J (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat Biotechnol 18: 888-892 https://doi.org/10.1038/78515
  22. Mares-Perlman JA, Millen AE, Ficek TL, Hankinson SE (2002) The body of evidence to support a protective role for lutein and zeaxanthin in delaying chronic disease. Overview. J Nutr 132: 518S-524S https://doi.org/10.1093/jn/132.3.518S
  23. Miura Y, Kondo K, Saito T, Shimada H, Fraser PD, Misawa N (1998) Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64: 1226-1229
  24. Murashige T, Sckoog F (1962) A revise medium for rapid growth and bioassays with tobacco tissues. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  25. Nishino H, Murakosh M, Ii T, Takemura M, Kuchide M, Kanazawa M, Mou XY, Wada S, Masuda M, Ohsaka Y, Yogosawa S, Satomi Y, Jinno K (2002) Carotenoids in cancer chemoprevention. Cancer Metastasis Rev 21: 257-264 https://doi.org/10.1023/A:1021206826750
  26. Sandmann G (2002) Combinatorial biosynthesis of carotenoids in a heterologous host: a powerful approach for the biosynthesis of novel structures. Chembiochem 3: 629-635 https://doi.org/10.1002/1439-7633(20020703)3:7<629::AID-CBIC629>3.0.CO;2-5
  27. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20: 401-412 https://doi.org/10.1046/j.1365-313x.1999.00611.x
  28. Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125: 810-817 https://doi.org/10.1104/pp.125.2.810
  29. Sun Z, Gantt E, Cunningham FX, Jr. (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271: 24349-24352 https://doi.org/10.1074/jbc.271.40.24349
  30. Tian L, DellaPenna D (2001) Characterization of a second carotenoid beta-hydroxylase gene from Arabidopsis and its relationship to the LUT1 locus. Plant Mol Biol 47: 379-388 https://doi.org/10.1023/A:1011623907959
  31. Tian L, Magallanes-Lundback M, Musetti V, DellaPenna D (2003) Functional analysis of beta- and epsilon-ring carotenoid hydroxylases in Arabidopsis. Plant Cell 15: 1320-1332 https://doi.org/10.1105/tpc.011403