DOI QR코드

DOI QR Code

Structural and Functional Analysis of Nitrogenase Fe Protein with MgADP bound and Amino Acid Substitutions

MgADP 결합 및 아미노산 치환 Nitrogenase Fe 단백질의 구조 및 기능 분석

  • Jeong, Mi-Suk (Korea Nanobiotechnology Center, Pusan National University) ;
  • Jang, Se-Bok (Korea Nanobiotechnology Center, Pusan National University)
  • Published : 2004.10.01

Abstract

The function of the [4Fe-4S] cluster containing iron (Fe-) protein in nitrogenase catalysis is to serve as the nucleotide-dependent electron donor to the MoFe protein which contains the sites for substrate binding and reduction. The ability of the Fe protein to function in this manner is dependent on its ability to adopt the appropriate conformation for productive interaction with the MoFe protein and on its ability to change redox potentials to provide the driving force required for electron transfer. The MgADP-bound (or off) conformational state of the nitrogenase Fe protein structure described reveals mechanisms for long-range communication from the nucleotide-binding sites to control affinity of association with the MoFe protein component. Two pathways, termed switches I and II, appear to be integral to this nucleotide signal transduction mechanism. In addition, the structure of the MgADP bound Fe protein provides the basis for the changes in the biophysical properties of the [4Fe-4S] observed when Fe protein binds nucleotides. The structures of the nitrogenase Fe protein with defined amino acid substitutions in the nucleotide dependent signal transduction pathways of the Switch I and Switch II have been determined by X-ray diffraction methods. These two pathways have been also implicated by site directed mutagenesis studies, structural analysis and analogies to other proteins that utilize similar nucleotide dependent signal transduction pathways. We have examined the validity of the assignment of these pathways in linking the signals generated by MgATP binding and hydrolysis to macromolecular complex formation and intermolecular electron transfer. The results provide a structural basis for the observed biophysical and biochemical properties of the Fe protein variants and interactions within the nitrogenase Fe protein-MoFe protein complex.

Nitrogenase 촉매에서 Fe-단백질을 포함하는 [4Fe-4S] 클라스터의 기능은 기질의 결합과 환원 자리를 포함하는 MoFe-단백질로 핵산 의존 전자 주개로 작용하는 것이다. 이러한 방법의 Fe-단백질의 기능은 Mofe-단백질과 상호작용을 위해 적합한 구조를 갖추며 전자 전달을 위한 추진력을 제공하기 위해 산화 환원 퍼텐셜을 변화시키는 능력에 의존한다. Nitrogenase Fe-단백질에 MgADP가 결합한 (혹은 떨어진) 구조적 정보는 핵산 결합 자리로부터 MoFe-단백질과의 결합력을 조절하기 위한 장거리 상호작용 메커니즘을 제시한다. 스위치 I과 II의 두 가지 경로가 뉴클레오티드의 신호전달 메커니즘을 담당한다. MgADP가 결합된 Fe-단백질의 구조는 Fe 단백질이 핵산과 결합할 때 관찰되는 [4Fe-4S] 클라스터의 생물리학적 특성 변화의 기초를 제공한다. 스위치, I과 II의 핵산 의존 신호전달 경로에서 특정 아미노산이 치환된 nitrogenase Fe-단백질의 구조들이 X-선 회절법에 의해서 결정되었다. 이들 경로는 아미노산 치환 연구, 구조 분석, 유사한 핵산 의존 신호전달 경로에 이용된 다른 단백질 등에 의해서도 분석되었다. 이들 경로가 거대분자 착물 형성과 분자간 전자 전달을 위한 MgADP 결합과 가수분해의 신호전달 경로로의 타당성이 조사되었다. 이러한 결과는 nitrogenase Fe 단백질과 MoFe-단백질 착물에서 Fe-단백질의 변이와 상호작용의 생물리학적 및 생화학적 특성을 위한 기초적 자료를 제공할 것이다.

Keywords

References

  1. Adman, E., Watenpaugh, K. D., and Jensen, L. H. 1975. NH---S hydrogen bonds in Peptococcus aerogenes ferredoxin, Clostridium pasteurianum rubredoxin, and Chromatium high potential iron protein. Proc. Natl. Acad. Sci. USA 72, 4854-4858 https://doi.org/10.1073/pnas.72.12.4854
  2. Breiter, D. R., Meyer, T. E., Rayment, L., and Holden, H. M. 1991. The molecular structure of the high potential iron-sulfur protein isolated from Ectothiorhodospira halophila determined at 2.5-A resolution. J. Biol. Chem. 266, 18660-18667
  3. Brigle, K. E.; Newton, W. E.; Dean, D. R. 1985. Complete nucleotide sequence of the Azotobacter vinelandii nitrogenase structural gene cluster. Gene 37, 37-44 https://doi.org/10.1016/0378-1119(85)90255-0
  4. Burgess, B. K. 1984. In advances in nitrogen fixation. pp. 103-114, In Veeger, C. and Newton, W. E. (eds.), Martinus Nijhoff, Boston
  5. Burgess, B. K. and Lowe, D. J. 1996. Mechanism of molybdenum nitrogenase. Chem. Rev. 96, 2983-3011 https://doi.org/10.1021/cr950055x
  6. Burris, R. H. (1991) Nitrogenases. J. Biol. Chem. 266, 9339-9342
  7. Carter, C. W., Jr., Kraut, J., Freer, S. T., Xuong, N. H., Alden, R. A., and Bartsch, R. G. 1974. Two-Angstrom crystal structure of oxidized Chromatium high potential iron protein. J. Biol. Chem. 249, 4212-4225
  8. Chen, L., Gavini, N., Tsuruta, H., Eliezer, D., Burgess, B. K., Doniach, S., and Hodgson, K. O. 1994. MgATP-induced conformational changes in the iron protein from Azotobacter vinelandii, as studied by small-angle x-ray scattering. J. Biol. Chem. 269, 3290-3294
  9. Duyvis, M. G., Wassink, H., and Haaker, H. 1996. Formation and characterization of a transition state complex of Azotobacter vinelandii nitrogenase. FEBS Lett. 380, 233-236 https://doi.org/10.1016/0014-5793(96)00019-1
  10. Esnouf, R. M. 1997. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph Model. 15, 132-134 https://doi.org/10.1016/S1093-3263(97)00021-1
  11. Georgiadis, M. M., Komiya, H., Chakrabarti, P., Woo, D., Kornuc, J. J., and Rees, D. C. 1992. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science 257, 1653-1659 https://doi.org/10.1126/science.1529353
  12. Hageman, R. V., and Burris, R. H. 1978. Nitrogenase and nitrogenase reductase associate and dissociate with each catalytic cycle. Proc. Natl. Acad. Sci. U.S.A. 75, 2699-2702 https://doi.org/10.1073/pnas.75.6.2699
  13. Heering, H. A., Bulsink, Y. B. M., Hagen, W. R., and Meyer, T. E. 1995. Reversible super-reduction of the cubane [4Fe-4S](3+;2+;1+) in the high-potential iron-sulfur protein under non-denaturing conditions. EPR spectroscopic and electrochemical studies. Eur. J. Biochem. 232, 811-817 https://doi.org/10.1111/j.1432-1033.1995.tb20877.x
  14. Howard, J. B. and Rees, D. C. 1994. Nitrogenase: a nucleotide-dependent molecular switch. Annu. Rev. Biochem. 63, 235-264 https://doi.org/10.1146/annurev.bi.63.070194.001315
  15. Howard, J. B., and Rees, D. C. 1996. Structural Basis of Biological Nitrogen Fixation. Chem. Rev. 96, 2965-2982 https://doi.org/10.1021/cr9500545
  16. Jacobson, M. R.; Brigle, K. E.; Bennett, L. T., Setterquist, R. A.; Wilson, M. S., Cash, V. L., Beyon, J., Newton, W. E., Dean, D. R. 1989. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. J. Bacteriol. 171, 1017-1027
  17. Jang, S. B., Seefeldt, L. C., and Peters, J. W. 2000. Insights into nucleotide signal transduction in nitrogenase: structure of an iron protein with MgADP bound. Biochemistry 39, 14745-14752 https://doi.org/10.1021/bi001705g
  18. Jang, S. B., Jeong, M. S., Seefeldt, L. C., Peters, J. W. 2004. Physical and genetic map of the major nif gene cluster from Azotobacter vinelandii. accepted to J. Biol. Inorg. Chem
  19. Jang, S. B., Seefeldt, L. C., and Peters, J. W. 2000. Modulating the midpoint potential of the [4Fe-4S] cluster of the nitrogenase Fe protein. Biochemistry 39, 641-648 https://doi.org/10.1021/bi991694v
  20. Jensen, G. M., Warshel, A., and Stephens, P. J. 1994. Calculation of the redox potentials of iron-sulfur proteins: the 2-/3-couple of [Fe4S*4Cys4] clusters in Peptococcus aerogenes ferredoxin, Azotobacter vinelandii ferredoxin I, and Chromatium vinosum high-potential iron protein. Biochemistry 33, 10911-10924 https://doi.org/10.1021/bi00202a010
  21. Langen, R., Jensen, G. M., Jacob, U., Stephens, P. J., and Warshel, A. 1992. Protein control of iron-sulfur cluster redox potentials. J. Biol. Chem. 267, 25625-25627
  22. Lanzilotta, W. N., and Seefeldt, L. C. 1997. Changes in the midpoint potentials of the nitrogenase metal centers as a result of iron protein-molybdenum-iron protein complex formation. Biochemistry 36, 12976-12983 https://doi.org/10.1021/bi9715371
  23. Lanzilotta, W. N., Holz, R. C., and Seefeldt, L. C. 1995. Proton NMR investigation of the [4Fe-4S]1+ cluster environment of nitrogenase iron protein from Azotobacter vinelandii: defining nucleotide-induced conformational changes. Biochemistry 34, 15646-15653 https://doi.org/10.1021/bi00048a007
  24. Lanzilotta, W. N., Fisher, K., and Seefeldt, L. C. 1997. Evidence for electron transfer-dependent formation of a nitrogenase iron protein-molybdenum-iron protein tight complex. The role of aspartate 39.J. Biol. Chem. 272, 4157-65 https://doi.org/10.1074/jbc.272.7.4157
  25. Lanzilotta, W. N., Ryle, M. J., and Seefeldt, L. C. 1995. Nucleotide hydrolysis and protein conformational changes in Azotobacter vinelandii nitrogenase iron protein: defining the function of aspartate 129. Biochemistry 34, 10713-10723 https://doi.org/10.1021/bi00034a003
  26. Lindahl, P. A., Gorelick, N. J., M$\ddot{u}$nck, E., and Orme-Johnson, W. H. 1987. EPR and Mossbauer studies of nucleotide-bound nitrogenase iron protein from Azotobacter vinelandii. J. Biol. Chem. 262, 14945-14953
  27. Mortenson, L. E., Seefeldt, L. C., Morgan, T. V. and Bolin, J. T. 1993. The role of metal clusters and MgATP in nitrogenase catalysis. Adv. Enzymol. Rel. Areas Mol. Biol. 67, 274-299
  28. Ljones, T. and Burris, R. H. 1978. Nitrogenase: the reaction between the Fe protein and bathophenanthrolinedisulfonate as a probe for interactions with MgATP. Biochemistry 17, 1866-1872 https://doi.org/10.1021/bi00603a010
  29. Meyer, J., Gaillard, J., and Moulis, J. M. 1988. Hydrogen-1 nuclear magnetic resonance of the nitrogenase iron protein (Cp2) from Clostridium pasteurianum. Biochemistry 27, 6150-6156 https://doi.org/10.1021/bi00416a048
  30. Nicholls, A., Sharp, K. A., and Honig, B. 1991. Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons Proteins 11, 281-296 https://doi.org/10.1002/prot.340110407
  31. Peters, J. W., Fisher, K., and Dean, D. R. 1995. Nitrogenase structure and function: A biochemical-genetic perspective. Annu. Rev. Microbiol. 49, 335-366 https://doi.org/10.1146/annurev.mi.49.100195.002003
  32. Renner, K. A., and Howard, J. B. 1996. Aluminum fluoride inhibition of nitrogenase: stabilization of a nucleotide.Fe- protein.MoFe-protein complex. Biochemistry 35, 5353-5358. https://doi.org/10.1021/bi960441o
  33. Ryle, M. J., Lanzilotta, W. N., Seefeldt, L. C., Scarrow, R. C., and Jensen, G. M. 1996. Circular dichroism and x-ray spectroscopies of Azotobacter vinelandii nitrogenase iron protein. MgATP and MgADP induced protein conformational changes affecting the [4Fe-4S] cluster and characterization of a [2Fe-2S] form. J. Biol. Chem. 271, 1551- 1557 https://doi.org/10.1074/jbc.271.3.1551
  34. Ryle, M. J. and Seefeldt, L. C. 1996. Elucidation of a MgATP signal transduction pathway in the nitrogenase iron protein: formation of a conformation resembling the MgATP-bound state by protein engineering. Biochemistry 35, 4766-4775 https://doi.org/10.1021/bi960026w
  35. Ryle, M. J., Lanzilotta, W. N., and Seefeldt, L. C. 1996. Elucidating the mechanism of nucleotide-dependent changes in the redox potential of the [4Fe-4S] cluster in nitrogenase iron protein: the role of phenylalanine 135.Biochemistry 35, 9424-9434 https://doi.org/10.1021/bi9608572
  36. Schindelin, H., Kisker, C., Schtessman, J. L., Howard, J. B., and Rees, D. C. 1997. Structure of ADP AIF4(-)-stabilized nitrogenase complex and its implications for signal transduction. Nature 387, 370-376 https://doi.org/10.1038/387370a0
  37. Shah, V. K., and Brill, W. J. 1977. Isolation of an iron- molybdenum cofactor from nitrogenase. Proc. Natl. Acad. Sci. U.S.A. 74, 3249-3253 https://doi.org/10.1073/pnas.74.8.3249
  38. Simpson, F. B. and Burris, R. H. 1984. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224, 1095-1097 https://doi.org/10.1126/science.6585956
  39. Smith, B. E. and Eady, R. R. 1992. Metalloclusters of the nitrogenases. Eur. J. Biochem. 205, 1-15 https://doi.org/10.1111/j.1432-1033.1992.tb16746.x
  40. Spee, J. H., Arendsen, A. F., Wassink, H., Marritt, S. J., Hagen, W. R., and Haaker, H. 1998. Redox properties and electron paramagnetic resonance spectroscopy of the transition state complex of Azotobacter vinelandii nitrogenase. FEBS Lett. 432, 55-58 https://doi.org/10.1016/S0014-5793(98)00827-8
  41. Stephens, P. J., Jollie, D. R., and Warshel, A. 1996. Protein control of redox potentials of ironminus sign sulfur proteins. Chem. Rev. 96, 2491-2513 https://doi.org/10.1021/cr950045w
  42. Stephens, P. J., McKenna, C. E., Smith, B. E., Nguyen, H. T., McKenna, M. C., Thomson, A. J., Devlin, F., and Jones, J. B. 1979. Circular dichroism and magnetic circular dichroism of nitrogenase proteins. Proc. Natl. Acad. Sci. U.S.A. 76, 2585-2589 https://doi.org/10.1073/pnas.76.6.2585
  43. Walker, G. A., and Mortenson, L. E. 1974. Effect of magnesium adenosine 5'-triphosphate on the accessibility of the iron of clostridial azoferredoxin, a component of nitrogenase. Biochemistry 13, 2382-2388 https://doi.org/10.1021/bi00708a023
  44. Watt, G. D., Wang, Z. C., and Knotts, R. R. 1986. Redox reactions of and nucleotide binding to the iron protein of Azotobacter vinelandii. Biochemistry 25, 8156-8162 https://doi.org/10.1021/bi00373a005
  45. Wolle, D., Dean, D. R., and Howard, J. B. 1992. Nucleotide- iron-sulfur cluster signal transduction in the nitrogenase iron-protein: the role of Asp125. Science 258, 992-995 https://doi.org/10.1126/science.1359643
  46. Zumft, W. G., Palmer, G., and Mortenson, L. E. 1973. Electron paramagnetic resonance studies on nitrogenase. II. Interaction of adenosine 5'-triphosphate with azoferredoxin. Biochim. Biophys. Acta. 292, 413-421 https://doi.org/10.1016/0005-2728(73)90047-9