Self-Organization of Dendron-Poly(ethylene glycol) Conjugates in an Aqueous Phase

  • Kim, Kyoung-Taek (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Resaerch Center, Inha University) ;
  • Lee, Im-Hae (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Resaerch Center, Inha University) ;
  • Park, Chiyoung (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Resaerch Center, Inha University) ;
  • Song, Yu-Mi (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Resaerch Center, Inha University) ;
  • Kim, Chul-Hee (Department of Polymer Science and Engineering, Hyperstructured Organic Materials Resaerch Center, Inha University)
  • Published : 2004.10.01

Abstract

We have prepared amide dendrons having alkyl peripheral units and various focal moieties through a convergent synthetic approach. The amphiphilic properties, due to hydrophilic amide branches and the hydrophobic peripheral units, provide an opportunity for the amide dendrons to self-organize in water. The dendritic architecture itself is also one of the critical factors in the self-organization of the amide dendrons in water. In particular, function-alization was performed at the focal point to elucidate the relationship between the focal functionality and the self-organized structures of the dendritic building blocks in the aqueous phase. The dendron having a short poly(ethylene glycol) monomethyl ether (MeO-PEG) unit (M$\_$n/ =750) as the focal moiety formed a vesicular organization in water. As the size of the hydrophilic focal MeO-PEG increased to M$\_$n/ =2,000 and 5,000, the self-organized structures became rod-type and spherical micelles, respectively. Our observation of multiple morphologies for amide dendrons is in good agreement with previous reports that indicated that the micellar structures changed from vesicles to rod-types and then to spheres upon increasing the size of the hydrophilic moiety of the amphiphiles.

Keywords

References

  1. Curr. Opin. Colloid Interfac. Sci. v.4 T. Emrick;J. M. Frechet
  2. Chem. Rev. v.99 G. R. Newkome;C. N. Moorefield https://doi.org/10.1021/cr9800659
  3. Chem. Rev. v.99 A. W. Bosman;H. M. Janssen;E. W. Meijer https://doi.org/10.1021/cr970069y
  4. Chem. Rev. v.97 F. Zeng;S. C. Zimmerman https://doi.org/10.1021/cr9603892
  5. Science v.271 S. C. Zimmerman;F. Zeng;D. E. C. Reichert;S. V. Kolotuchin https://doi.org/10.1126/science.271.5252.1095
  6. J. Am. Chem. Soc. v.120 V. Percec;W.-D. Cho;P. E. Mosier;G. Ungar;D. J. P. Yeardley https://doi.org/10.1021/ja9819007
  7. J. Am. Chem. Soc. v.122 W.-D. Jang;D. L. Jiang;T. Aida https://doi.org/10.1021/ja994232d
  8. J. Am. Chem. Soc. v.123 E. R. Zubarev;M. U. Pralle;E. D. Sone;S. I. Stupp https://doi.org/10.1021/ja015653+
  9. Angew. Chem. Int. Ed. v.39 V. Percec;W.-D. Cho;G. Ungar;D. J. P. Yeardley https://doi.org/10.1002/(SICI)1521-3773(20000502)39:9<1597::AID-ANIE1597>3.0.CO;2-I
  10. J. Am. Chem. Soc. v.122 V. Percec;W.-D. Cho;M. Moller;S. A. Prokhorova;G. Ungar;D. J. P. Yeardley https://doi.org/10.1021/ja9943400
  11. J. Am. Chem. Soc. v.123 V. Percec;W.-D. Cho;G. Ungar;D. J. P. Yeardley https://doi.org/10.1021/ja0037771
  12. J. Am. Chem. Soc. v.123 M. Enomoto;A. kishimura;T. Aida https://doi.org/10.1021/ja010426t
  13. Angew. Chem. Int. Ed. v.40 S. Hecht;J. M. J. Frechet https://doi.org/10.1002/1521-3773(20010105)40:1<74::AID-ANIE74>3.0.CO;2-C
  14. Supramolecular Polymers D. A. Tomalia;I. Majoros
  15. Angew. Chem. Int. Ed. Engl. v.31 G. R. Newkome;C. N. Moorefield;G. R. Baker;R. K. Behera;G. H. Escamillia;M. J. Saunders https://doi.org/10.1002/anie.199209171
  16. J. Am. Chem. Soc. v.116 T. M. Chapman;G. L. Hillyer;E. J. Mahan;K. A. Shaffer https://doi.org/10.1021/ja00103a060
  17. Macromolecules v.33 Y. Chang;Y. C. Kwon;S. C. Lee;C. Kim https://doi.org/10.1021/ma9908853
  18. J. Am. Chem. Soc. v.122 J. S. Choi;D. K. Joo;C. H. Kim;K. Kim;J. S. Park https://doi.org/10.1021/ja9931473
  19. Science v.268 J. C. M. van Hest;D. A. P. Delnoye;M. W. P. L. Baars;M. H. P. van Genderen;E. W. Meijer https://doi.org/10.1126/science.268.5217.1592
  20. Chem. Eur. J . v.2 J. C. M. van Hest;D. A. P. Delnoye;M. W. P. L. Baars;C. Elissen-Roman;M. H. P. van Genderen;E. W. Meijer https://doi.org/10.1002/chem.19960021221
  21. J. Am. Chem. Soc. v.123 C. Kim;K. T. Kim;Y. Chang;H. H. Song;T.-Y. Cho;H.-Jeon https://doi.org/10.1021/ja015687h
  22. Chem. Mater. v.15 C. Kim;S. J. Lee;I. H. Lee;K. T. Kim;H. H. Song;H.-J. Jeon https://doi.org/10.1021/cm021087l
  23. Purification of Laboratory Chemicals(4th ed.) W. L. F. Armarego;D. D. Perrin
  24. Angew. Chem. Int. Ed. v.39 B. J. Ravoo;R. Darcy https://doi.org/10.1002/1521-3773(20001201)39:23<4324::AID-ANIE4324>3.0.CO;2-O
  25. Langmuir v.16 C. Caillet;M. Herbrant;C. Tondre https://doi.org/10.1021/la000810o
  26. J. Am. Chem. Soc. v.107 L. A. M. Rupert;D. Hoekstra;J. B. F. N. Engberts https://doi.org/10.1021/ja00295a012
  27. J. Am. Chem. Soc. v.108 L. A. M. Rupert;J. B. F. N. Engberts;D. Hoekstra https://doi.org/10.1021/ja00274a011
  28. Membrane Mimetic Chemistry J. H. Fendler
  29. Angew. Chem. Int. Ed. Engl. v.31 T. Kunitake https://doi.org/10.1002/anie.199207091
  30. Angew. Chem. Int. Ed. Engl. v.27 H. Ringsdorf;B. Schlarb;J. Venzmer https://doi.org/10.1002/anie.198801131
  31. Intermolecular and Surface Forces J. N. Israelachvli
  32. ChemBioChem. v.2 C. M. Paleos;Z. Sideratou;D. Tsiourvas https://doi.org/10.1002/1439-7633(20010504)2:5<305::AID-CBIC305>3.0.CO;2-9
  33. Acc. Chem. Res. v.34 D. L. Gin;W. Gu;B. A. Pindzola;W.-J. Zhou https://doi.org/10.1021/ar000140d
  34. Science v.268 L. Zhang;A. Eisenberg https://doi.org/10.1126/science.268.5218.1728
  35. J. Am. Chem. Soc. v.118 L. Zhang;A. Eisenberg https://doi.org/10.1021/ja953709s
  36. Angew. Chem. Int. Ed. v.39 B. J. Ravoo;R. Darcy https://doi.org/10.1002/1521-3773(20001201)39:23<4324::AID-ANIE4324>3.0.CO;2-O