Electro-optic Properties of a Guest-Host System Containing a Phenothiazine-based Chromophore: Effect of the Chromophore Density on the Macroscopic Optical Nonlinearity

  • Lee, Sang-Kyu (College of Environment &) ;
  • Cho, Min-Ju ( Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Yoon, Hyuk (College of Environment &) ;
  • Lee, Seung-Hwan ( Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Kim, Jae-Hong (College of Environment &) ;
  • Qing Zhang ( Applied Chemistry, Institute of Natural Sciences, Kyung Hee University) ;
  • Choi, Dong-Hoon (College of Environment &)
  • 발행 : 2004.10.01

초록

We have prepared a phenothiazine-based nonlinear optical (NLO) chromophore that displays a fairly high microscopic nonlinearity through intramolecular charge transfer. The phenothiazine unit plays important roles of contributing its high electron donating ability and connecting the resonance pathway through a conjugative effect in the cyclized ring adjacent to the aromatic ring. Theoretical calculations and an absorption spectroscopic study provided useful information concerning the microscopic nonlinearity of the chromophores. We investigated the electro-optic (EO) properties of the guest-host systems in amorphous polycarbonate containing the synthesized chromophores at different concentrations under different poling temperatures. A real-time pole and probe method provided a much greater amount of information regarding how the EO properties can arise and how they can be optimized.

키워드

참고문헌

  1. Chem. Mater. v.6 S. Gilmour;R. A. Montgomery;S. R. Marder;L.-T. Cheng;A. K-Y. Jen;Y. Cai;J. W. Perry;L. R. Dalton https://doi.org/10.1021/cm00046a007
  2. Macromolecules v.36 S. H. Kang;J. Luo;H. Ma;R. R. Barto;C. W. Frank;L. R. Dalton;A. K-Y. Jen https://doi.org/10.1021/ma0217229
  3. J. Am. Chem. Soc. v.123 H. Ma;B. Chen;T. Sassa;L. R. Dalton;A. K-Y. Jen https://doi.org/10.1021/ja003407c
  4. Chem. Mater. v.11 H. Ma;A. K-Y.Jen;J. Wu;X. Wu;S. Liu;C.-F. Shu;L. R. Dalton;S. R. Marder;S. Thayumanavan https://doi.org/10.1021/cm9901818
  5. Macromolecules v.37 M. Haller;J. Luo;H. Li;T.-D. Kim;Y. Liao;B. H. Robinson;L. R. Dalton;A. K-Y. Jen https://doi.org/10.1021/ma035393b
  6. Chem. Rev. v.94 D. M. Burland;R. D. Miller;C. A. Walsh https://doi.org/10.1021/cr00025a002
  7. Chem. Phys. v.245 B. H. Robinson;L. R. Dalton;A. W. Harper;A. Ren;F. Wang;C. Zhang;G. Todorova;M. Lee;R. Aniszfeld;S. Garner;A. Chen.;W. H. Steier;S. Houbrecht;A. Persoons;I. Ledoux;J. Zyss;A. K-Y. Jen https://doi.org/10.1016/S0301-0104(99)00079-8
  8. Chem. Mater. v.14 M. He;T. M. Leslie;J. A. Sinicropi;S. M. Garner;L. D. Reed
  9. Chem. Mater. v.13 C. Zhang;L. R. Dalton;M.-C. Oh;H. Zhang;W. H. Steier https://doi.org/10.1021/cm010463j
  10. Macromolecules v.34 C. Zhang;C. Wang;L. R. Dalton;H. Zhang;W. H. Steier https://doi.org/10.1021/ma001561d
  11. Chem. Mater v.11 C. Zhang;A. S. Ren;F. Wang;J. Zhu;L. R. Dalton;J. N. Woodford;C. H. Wang https://doi.org/10.1021/cm9902321
  12. Macromolecules v.37 J. Luo;M. Haller;H. Li;H.-Z. Tang;A. K-Y. Jen;K. Jakka;C.-H. Chou;C.-F. Shu https://doi.org/10.1021/ma0350009
  13. J. Am. Chem. Soc. v.126 P. Gopalan;H. E. Katz;D. J. McGee;C. Erben;T. Zielinski;D. Bousquet;D. Muller;J. Grazul;Y. Olsson https://doi.org/10.1021/ja039768k
  14. Appl. Phys. Lett. v.56 C. C. Teng;H. T. Man https://doi.org/10.1063/1.103107
  15. J. Appl. Phys. v.80 F. Micheloutti;E. Toussare;R. Levenson;J. Liang;J. Zyss https://doi.org/10.1063/1.362987
  16. Thin Solid Films v.360 D. H. Choi;J. H. Park;J. H. Lee;S-D. Lee https://doi.org/10.1016/S0040-6090(99)00871-8