Cocrystallization of Poly(1,4-cyclohexylenedimethylene terephthalate-co-hexamethylene terephthalate) Copolymers

  • Jeong, Young-Gyu (Hyperstructured Organic Materials Research Center and School of Materials Science and Engineering, Seoul National University) ;
  • Jo, Won-Ho (Hyperstructured Organic Materials Research Center and School of Materials Science and Engineering, Seoul National University) ;
  • Lee, Sang-Cheol (School of Advanced Materials and Systems Engineering, Kumoh National Institute of Technology)
  • Published : 2004.10.01

Abstract

We have synthesized poly(l,4-cyclohexylenedimethylene terephthalate-co-hexamethylene terephthalate) [P(CT-co-HT)] random copolymers having various comonomer contents, from 0 to 100 mol% HT, by melt-condensation and have investigated their crystallization behavior by using differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD). We observed that P(CT-co-HT)s exhibit clear melting and crystallization peaks in their DSC thermograms and sharp diffraction peaks in their WAXD patterns for all of their copolymer compositions as a result of cocrystallization of the CT and HT units, even though the copolymers are statistically random copolymers. When we plotted the melting and crystallization temperatures of P(CT-co-HT)s and the d-spacings of all the reflections against the copolymer composition, we observed a eutectic point at ca. 80 mol% HT, which suggests that a crystal transition occured from a PCT-type crystal to a PHT-type crystal. Both the DSC and WAXD results support the notion that P(CT-co-HT) copolymers undergo an isodimorphic cocrystallization.

Keywords

References

  1. U. S. Patent 2,901,466 C. J. Kibler;A. Bell;J. G. Smith
  2. J. Polym. Sci. v.2 C. J .Kibler;A. Bell;J. G. Smith
  3. Dental Materials v.8 A. J. Goldberg;C. J. Burstone https://doi.org/10.1016/0109-5641(92)90083-O
  4. Macromolecules v.31 L. P. Chen;A. F. Yee;J. M. Goetz;J. Schaefer https://doi.org/10.1021/ma971671t
  5. Macromolecules v.32 L. P. Chen;A. F. Yee;E. J. Moskala https://doi.org/10.1021/ma981363a
  6. Macromolecules v.36 S. S. Lee;A. F. Yee https://doi.org/10.1021/ma034660a
  7. Polym. Eng. Sci. v.30 A. B. Auerbach;J. W. Sell https://doi.org/10.1002/pen.760301707
  8. Polym. Eng. Sci. v.37 T. S. Oh;J. H. Ryou;Y. S. Chun;W. N. Kim https://doi.org/10.1002/pen.11726
  9. Polymer v.35 H. Y. Yoo;S. Umemoto;T. Kikutani;N. Okui https://doi.org/10.1016/0032-3861(94)90059-0
  10. Korea Polym. J. v.8 S. W. Lee;W. Huh;Y. S. Hong;K. M. Lee
  11. Macromol. Symp. v.199 T. E. Sandhya;C. Ramesh;S. Sivaram https://doi.org/10.1002/masy.200350939
  12. Macromolecules v.33 Y. G. Jeong;W. H. Jo;S. C. Lee https://doi.org/10.1021/ma000040n
  13. Polymer. v.43 Y. G. Jeong;W. H. Jo;S. C. Lee https://doi.org/10.1016/S0032-3861(02)00370-1
  14. Macromolecules v.36 Y. G. Jeong;W. H. Jo;S. C. Lee https://doi.org/10.1021/ma034094j
  15. J. Polym. Sci.;Part B: Polym. Phys. v.42 Y. G. Jeong;W. H. Jo;S. C. Lee https://doi.org/10.1002/polb.10691
  16. J. Res. Natl. Bureau Stand v.66A J. D. Hoffman;J. J. Weeks https://doi.org/10.6028/jres.066A.003
  17. Chemical Microstructure of Polymer Chains J. L. Koenig
  18. J. Chem. Phys. v.15 P. J. Flory https://doi.org/10.1063/1.1746627
  19. Trans. Faraday. Soc. v.51 P. J. Flory https://doi.org/10.1039/tf9555100848
  20. Macromol. Chem. v.98 V. H. Baur https://doi.org/10.1002/macp.1966.020980130
  21. Macromolecules v.6 E. Helfand;J. I. Lauritzen https://doi.org/10.1021/ma60034a031
  22. Macromolecules v.8 I. C. Sanchez;R. K. Eby https://doi.org/10.1021/ma60047a012
  23. Macromolecules v.31 J. Wendling;U. W. Suter https://doi.org/10.1021/ma971506d
  24. Properties of Polymers D. W. Van Krevelen
  25. J. Polym. Sci. v.55 C. A. Boye https://doi.org/10.1002/pol.1961.1205516126
  26. Polymer v.23 B. Remillard;F. Brisse https://doi.org/10.1016/0032-3861(82)90224-5
  27. Polymer v.23 I. H. Hall;B. A. Ibrahim https://doi.org/10.1016/0032-3861(82)90138-0