DOI QR코드

DOI QR Code

비정상 소화 과정에서의 화염 온도 및 OH 라디칼의 변화

Changes of the Flame Temperature and OH Radical in the Unsteady Extinction Process

  • 이은도 (한국과학기술원 대학원 기계공학과) ;
  • 이기호 (현대자동차 연구소) ;
  • 오광철 (한국과학기술원 대학원 기계공학과) ;
  • 신현동 (한국과학기술원 기계공학과)
  • 발행 : 2004.12.01

초록

A flame extinction phenomenon is a typical unsteady process in combustion. Flame extinction is characterized by various physical phenomena, such as convection, diffusion, and the production of heat and mass. Flame extinction can be achieved by either increasing the strain rate or curvature, by diluting an inert gas or inhibitor, or by increasing the thermal or radiant energy loss. Though the extinction is an inherently transient process, steady and quasi-steady approaches have been used as useful tools for understanding the flame extinction phenomenon. Recently, unsteady characteristics of flames have been studied by many researchers, and various attempts have been made to understand unsteady flame behavior, by using various extinction processes. Representative parameters for describing flame, such as flame temperature, important species related to reactions, and chemi-luminescence of the flame have been used as criterions of flame extinction. In these works, verification of each parameter and establishing the proper criterions of the extinction has been very important. In this study, a time-dependent flame temperature and an OH radical concentration were measured using optical methods, and the instantaneous change of the flame luminosity was also measured using a high-speed ICCD (HICCD) camera. We compare the unsteady extinction points obtained by three different methods, and we discuss transient characteristics of maximum flame temperature and OH radical distribution near the extinction limit.

키워드

참고문헌

  1. Tsuji, H., 1982, 'Counter-Flow Diffusion Flames,' Prog. Energy Combust. Sci. 8, pp. 93-119 https://doi.org/10.1016/0360-1285(82)90015-6
  2. Williams, F. A., 2000, 'Progress in Knowledge of Flamelet and Extinction,' Prog. Energy Combust. Sci. 26, pp. 657-682 https://doi.org/10.1016/S0360-1285(00)00012-5
  3. Linan, A., 1974, 'The Asymptotic Structure of Counter-Flow Diffusion Flames for Large Activation Energies,' Acta Astronautica 1, pp. 1007-1039 https://doi.org/10.1016/0094-5765(74)90066-6
  4. Ishizuka, S. and Tsuji, H., 1981, 'An Experimental Study of Effect of Inert Gases in Extinction of Laminar Diffusion Flames,' Proc. Comb. Inst 18, pp. 695-703 https://doi.org/10.1016/S0082-0784(81)80074-4
  5. Puri, I. K. and Seshadri, K., 1986, 'Extinction of Diffusion Flames Burning Diluted Methane and Diluted Propane in Diluted Air,' Combust. Flame 65, pp. 137-150 https://doi.org/10.1016/0010-2180(86)90015-5
  6. Dixon-Lewis, G. and Massaghi, M., 1988, 'Structure and Extinction Limits of Counter-Flow Diffusion Flames of Hydrogen-Nitrogen Mixtures in Air,' Proc. Comb. Inst 22, pp. 1461-1470
  7. Chelliah, H. K., Law, C. K., Ueda, T., Smook, M. D. and Williams, F. A., 1990, 'An Experimental and Theoretical Investigation of the Dilution, Pressure, and Flow-Field Effects on the Extinction Condition of Methane-Air-Nitrogen Diffusion Flames,' Proc. Comb. Inst 23, pp. 503-511
  8. Du, J. and Azelbaum, R. L., 1996, 'The Effects of Flame Structure on Extinction of $CH_4-O_2-N_2$ Diffusion Flames,' Proc. Comb. Inst 26, pp. 1137-1142 https://doi.org/10.1016/S0082-0784(96)80329-8
  9. Pitts, W. M. and Blevins, L. G., 1999, 'An Investigation of Extinguishment by Thermal Agents Using Detailed Chemical Modeling of Opposed-Flow Diffusion Flames,' Halon Options Technical Working Conference, pp. 145-156
  10. Peters, N., 1983, 'Local Quenching Due to Flame Stretch and Non-Premixed Turbulent Combustion,' Combust. Sci. and Tech. 30, pp. 1-17 https://doi.org/10.1080/00102208308923608
  11. Peters, N., 1984, 'Laminar Diffusion Flamelet Models in Non-Premixed Turbulent Combustion,' Progress in Energy and Combustion Science, Vol. 10, pp.319-339 https://doi.org/10.1016/0360-1285(84)90114-X
  12. Darabiha, N., 1992, 'Transient Behavior of Laminar Counterflow Hydrogen-Air Diffusion Flames with Complex Chemistry,' Combust. Sci. and Tech. 86, pp. 163-181 https://doi.org/10.1080/00102209208947193
  13. Oh, C. B. and Lee, C. E. 2003, 'Extinction in a Counterflow Nonpremixed Flame Interacting with a Vortex,' Trans. of the KSME B, Vol. 27, No. 10, pp. 1401-1411 https://doi.org/10.3795/KSME-B.2003.27.10.1401
  14. Oh, C. B. and Lee C. E. 2001, 'Numerical Simulation of Unsteady $CH_4$/ Air Jet Diffusion Flame,' Trans. of the KSME B, Vol. 25, No. 8, pp. 1087-1096
  15. Katta, V. R., Meyer, T. R., Brown, M. S., Gord, J. R. and Roquemore, W. M., 2004, 'Extinction Criterion for Unsteady, Opposing Jet Diffusion Flames,' Combust. Flame 137, pp. 198-221 https://doi.org/10.1016/j.combustflame.2004.02.004
  16. Lee, E. J., Oh, K. H. and Shin, H. D., 2000, 'Experiments on The Transient Effect of Evolving Jet Diffusion Flames,' Proc. Comb. Inst. 28, pp. 2079-2084 https://doi.org/10.1016/S0082-0784(00)80616-5
  17. Brown, T. M., Pitz, R. W. and Sung, C. J., 1998, 'Oscillatory Stretch Effects on The Structure and Extinction of Counterflow Diffusion Flames,' Proc. Comb. Inst. 27, pp. 703-710 https://doi.org/10.1016/S0082-0784(98)80463-3
  18. Thevenin, D., Renard, P. H., Rolon, J. C. and Candle, S., 1998, 'Extinction Processes During a Nonpremixed Flame-Vortex Interaction,' Proc. Comb. Inst. 27, pp. 719-726 https://doi.org/10.1016/S0082-0784(98)80465-7
  19. Santoro, V. S., Kyritsis, D. C., Linan, A. and Gomez, A., 2000, 'Vortex-Induced Extinction Behavior in Methanol Gaseous Flames: a Comparison with Quasisteady Extioncion,' Proc. Comb. Inst. 28, pp. 2109-2116 https://doi.org/10.1016/S0082-0784(00)80620-7
  20. Rolon, J. C., Veynante, D., Martin, J. P. and Dust, F., 1991, 'Counter Jet Stagnation Flow,' Experiments in Fluids 11, pp. 313-324 https://doi.org/10.1007/BF00194863
  21. Korusoy, E. and Whitelaw, J. H., 2002, 'Extinction and Relight in Opposed Flames,' Experiments in Fluids 33, pp. 75-89 https://doi.org/10.1007/s00348-002-0454-3
  22. Konnov, A., Idir, M., Delafau, J. L. and Vovelle, C., 1996, 'Experimental Study of Extinction of Nonadiabatic Counter-Flow Premixed Flames,' Combust. Flame 105, pp. 308-320 https://doi.org/10.1016/0010-2180(95)00203-0
  23. Namer, I. and Schefer, R. W., 1985, 'Error Estimates for Rayleigh Scattering Density and Temperature Measurements in Premixed Flames,' Experiments in Fluids 3, pp. 1-9 https://doi.org/10.1007/BF00285264
  24. Seo, J. I., Kim, N. I., Oh, K. C. and Shin, H. D., 2003, 'An Experimental Study on the Effects of Concentration Gradient and Mean Velocity on the Liftoff Characteristics of the Triple Flame,' Trans. of the KSME B, Vol. 27, No. 8, pp. 1061-1070 https://doi.org/10.3795/KSME-B.2003.27.8.1061
  25. Yoon, J. H. and Lee, S. J., 2000, 'Temperature Field Measurement of Non-Isothermal Jet Flow Using LIF Technique,' Trans. of the KSME B, Vol. 24, No. 10, pp. 1399-1408
  26. Lee, B. J., Gil, Y. S., Han, J. W. and Chung, S. H., 1996, 'Hydroxyl Radical Measurements in the Flame Using LIF,' Trans. of the KSME B, Vol. 20, No. 2, pp. 710-719
  27. Jin, S. H., Nam, G. J., Kim, H. S., Chang, N. N., Park, S. H., Kim, U., Park, K. S., Sim, K. H. and Kim, K. S., 1996, 'Planar Measurements of Oh and $O_2$ Number Density in Premixed $C_3H_8/O_2$ Flame Using Laser Induced Predissociative Fluorescence,' Trans. of the KSME B, Vol. 20, No. 12, pp. 4044-4052
  28. Jeong, E, H., Yoon, S. Y. and Kim, K. C., 2003, 'Simultaneous Measurement of Velocity and Concentration Field in a Stirred Mixer Using PIV/LIF Technique,' Trans. of the KSME B, Vol. 27 No. 4 pp. 504-510 https://doi.org/10.3795/KSME-B.2003.27.4.504
  29. Kee, R. J., Rupley, F. M., Miller, J. A., Coltrin, M. E., Grcar, J. F., Meeks, E., Moffat, H. K., Lutz, A. E., Dixon-Lewis, G., Smooke, M. D., Warnatz, J., Evans, G. H., Larson, R. S., Mitchell, R. E., Petzold, L. R., Reynolds, W. C., Caracotsios, M., Stewart, W. E., Glarborg, P., Wang, C. and Adigun. O., 2000, CHEMKIN Collection, Release 3.6, Reaction Design. Inc. San Diego, CA
  30. Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, Soonho, Gardiner, W. C. Jr., Lissianski, V. V. and Qin, Z., 2000, GRI-Mech 3.0., http://www.me.berkeley.edu/gri_mech/