Poly (sodium 4-styrenesulfonate)/ 물 이성분용액의 초음파 음속 및 흡수계수측정

Ultrasonic Velocity and Absorption Measurements for poly (sodium 4-styrenesulfonate) and Water Solutions

  • 배종림 (대구대학교 자연과학대학 물리학과)
  • 발행 : 2004.10.01

초록

Poly (sodium 4-styrenesulfonate) 수용액에 대한 3 MHz의 초음파 음속측정과 0.2-2.2 MHz의 범위에 대한 흡수계수를 측정하였다. 음속은 펄스법을 사용하여 농도 5-25 wt%, 온도 10-90 ℃에 대하여 측정한 결과, 농도 25, 20, 15, 10, 5 wt%에 대한음속의 최대치 온도는 각각 55, 59, 63, 67, 71 ℃이였다. 흡수계수측정은 광 회절 초음파공명법을 사용하여 농도 5-25 wt%, 20 ℃에서 행하였다. 그 결과, 200 kHz부근에서 고분자 chain의 부분운동에 의한 완화현상을, 1 MHz 부근에서는 술폰기 (SO₃)의 proton의 전이에 의한 완화현상을 각각 관측하였다. 흡수계수와 점성은 농도와 함께 증가하였으나 온도증가에 대해서는 감소하였다.

Both ultrasonic velocity at 3 MHz and absorption coefficient in the frequency range of 0.2-2 MHz were measured for poly (sodium 4-styrenesulfonate) aqueous solution over the concentration range of 5 to 25 % by weight. Pulse echo overlap method was employed to measure the ultrasonic velocity over the temperature range of 10-90 ℃ and the high-a ultrasonic resonator method was used for the absorption coefficient measurement at 20 ℃. The velocity exhibited a maximum value at approximately 55. 59, 63. 67, and 71 ℃ in 25, 20. 15, 10. and 5 wt% solutions, respectively. The velocity increased with poly (sodium 4-styrenesulfonate) concentration at a given temperature. The concentrations dependences of the relaxation frequency and amplitude showed that the relaxation around 200 kHz is related to the structural fluctuations of polymer molecules, such as the segmental motions of the polymer chains and that around 1 MHz resulted from the proton transfer reaction of the oxygen sites of SO₃. Both the absorption and the shear viscosity increase with the Polymer concentration. but decrease with temperature.

키워드

참고문헌

  1. J.-R. Bae and Seung Yun, 'Ultraonic Velocity and Absorption in Binary Solutions of Silicon Dioxide and Water' Jpn. J. ApplL Phys., 37. 2801-2802, 1998 https://doi.org/10.1143/JJAP.37.2801
  2. J.-R. Bae and Jeong-Koo Kim, 'Ultrasonic Velocity and Absorption Measurements upon a Gelation of Egg White' J. Kor. Phys. Soc., 32, 686-690, 1998
  3. J.-R. Bae, J.-K. Kim, and M.-H. Yi, 'Ultrasonic Velocity and Absorption tv'Ieasurements for Polyethylene glycol and Water Solutions' Jpn. J. Appli. Phys., 39, 2946-2947, 2000 https://doi.org/10.1143/JJAP.39.2946
  4. R. Esquivel-Sirvnt, S. S. Yun, and F. B. Stumpf, 'Absorption and Velocity of Ultrasound in Binary Solutions of Poly (sodium 4-styrenesulfonate) and Water' J. Acoust. Soc. Am.. 95. 557-558. 1994 https://doi.org/10.1121/1.408350
  5. 배종림. '초음파 pulse의 다중반사에 의한 액체의 초음파 속도 및 흡수측정'. 응용물리, 5. 136-141, 1992.
  6. Jong-rim Bae and Myung-Ha Lee, 'High-a Ultrasonic Resonator using Optical Diffraction for Liquids' J. Kor. Phys. Soc., 29, 40-43. 1996
  7. John E. Stuehr, 'Ultrasonic Method', in Techniques of Chemistry (John Wiley & Sons, Inc., 1986) edited by Claude F. Bernasconi, 247-303
  8. P.-K. Choi, J.-R. Bae, and K. Takagi, 'Ultrasonic Spectroscopy in Bovine Serum Albumin Solutions' J. Acoust. Soc. Am., 87,874-881, 1990 https://doi.org/10.1121/1.398897
  9. K. Takagi, Ultrasonic Handbook (Maruzen, Tokyo, 1999), Chap6, 229-226
  10. S. Kato, N. Yamauchi, H. Nomura, and Y. Miyahara, 'Ultrasonic Relaxation Study of Aqueous Solutions of Poly (acrylic acid)' Macromolecules, 18, 1496-1504, 1985 https://doi.org/10.1021/ma00149a023
  11. V. A. Del Grosso and C. W. Mader, 'Speed of Sound in Pure Water' J. Acoust. Soc. Am., 52, 1442-1446, 1972 https://doi.org/10.1121/1.1913258