Acetylcholinesterase Inhibitors from the Aerial Parts of Corydalis speciosa

  • Kim, Dae-Keun (College of Pharmacy, Woosuk University) ;
  • Lee, Ki-Taek (College of Pharmacy, Woosuk University) ;
  • Kim, Sung-Hoon (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University) ;
  • Park, Hee-Wook (Department of Oncology, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lim, Jong-Pil (College of Pharmacy, Woosuk University) ;
  • Shin, Tae-Yong (College of Pharmacy, Woosuk University) ;
  • Eom, Dong-Ok (College of Pharmacy, Woosuk University) ;
  • Yang, Jae-Heon (College of Pharmacy, Woosuk University) ;
  • Eun, Jae-Soon (College of Pharmacy, Woosuk University) ;
  • Baek, Nam-In (Graduate School of Biotechnology & Plant Metabolism Research Center, Kyung Hee University)
  • Published : 2004.11.01

Abstract

In a bioassay-guided search for acetylcholinesterase inhibitors from Korean natural resources, four isoquinoline alkaloids, corynoxidine (1), protopine (2), palmatine (3), and berberine (4) have been isolated from the methanolic extract of the aerial parts of Corydalis speciosa. Structures of these compounds were elucidated on the basis of spectroscopic techniques. These compounds inhibited acetylcholinesterase activity in a dose-dependent manner, and the $IC_50$ values of compounds 1-4 were 89.0, 16.1, 5.8, and 3.3 $\mu$ M, respectively.

Keywords

References

  1. Ahn, D. K., Illustrated Book of Korean Medicinal Herbs. Kyohaksa, Seoul,p. 488. (2001)
  2. Bartus, R. T., On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol., 163, 495-529 (2000) https://doi.org/10.1006/exnr.2000.7397
  3. Bartus, R. T., Dean, R. L., Beer, B., and Lippa, A. S., The cholinergic hypothesis of geriatric memory dysfunction. Science, 217, 408-414(1982) https://doi.org/10.1126/science.7046051
  4. Chung, Y. K., Heo, H. J., Kim, E. K., Kim, H. K., Huh, T. L., Lim, Y., Kim, S. K., and Shin, D. H., Inhibitory effect of ursolic acid purified from Origanum majorana L. on the acetylcholine-sterse. Mol. Cells, 11, 137-143(2001)
  5. Ellman, G. L., Courtney, D., Valentino, A., and Featherstone, R. M., A new and rapid colorimetric determination of acetyl-cholinesterase activity. Biochem. Pharmacol., 7, 88-95(1961) https://doi.org/10.1016/0006-2952(61)90145-9
  6. Hussain, R. A., Kim, J., Beecher, C. W. W., and Kinghorn, A. D., Unambiguous carbon-13 NMR assignments of some biologically active protoberberine alkaloids. Heterocycles, 29, 2257-2260 (1989) https://doi.org/10.3987/COM-89-5168
  7. Hwang, S. Y., Chang, Y. P., Byun, S. J., Jeon, M. H., and Kim, Y, C., An acetylcholinesterase inhibitor isolated from Corydalis Tuber and its mode of action. Kor. J. Pharmacogn., 27, 91-95 (1996)
  8. Jewers, K. and Manchanda, A. H., The proton magnetic resonances spectra of protoberberium salts. J. Chem. Soc. Perkin II. 1393-1396 (1972)
  9. Kalauni, S. K., Choudhary, M. I., Khalid, A., Manandhar, M. D., Shaheen, F., Atta-ur-Rahman, and Gewali, M. B., New cholinesterase inhibiting steroidal alkaloids from the leaves of Sarcococca coriacea of Nepalese origin. Chem. Pharm. Bull., 50,1423-1426 (2002) https://doi.org/10.1248/cpb.50.1423
  10. Kim, D. K., Inhibitory effect of corynoline isolated from the aerial parts of Corydalis incisa on the acetylcholinesterase. Arch. Pharm. Res., 25, 817-819 (2002) https://doi.org/10.1007/BF02976997
  11. Kim, D. K. and Lee, K., Inhibitory effect of trans-N-coumaroyl tyramine from the twigs of Celtis chinensis on acetylcho-linesterase. Arch. Pharm. Res., 26, 735-738 (2003) https://doi.org/10.1007/BF02976684
  12. Kim, D. K., Lim, J. P., Yang, J. H., Eom, D. O., Eun, J. S., and Leem, K. H., Acetylcholinesterase inhibitors from the roots of Angelica dahurica. Arch. Pharm. Res., 25, 856-859 (2002) https://doi.org/10.1007/BF02977004
  13. Lee, J. H., Lee, K. T., Yang, J. H., Baek, N. I., and Kim, D. K., Acetylcholinesterase inhibitors from the twigs of Vaccinium oldhami Miquel. Arch. Pharm. Res., 27, 53-56 (2004) https://doi.org/10.1007/BF02980046
  14. Mortensen, S. R., Chanda, S. M., Hooper, M. J., and Padilla, S., Maturational differences in chlorpyrifos-oxonase activity may contribute to age-related sensitivity to chlorpyrifos. J. Biochem. Toxicol., 11,279-287 (1996) https://doi.org/10.1002/(SICI)1522-7146(1996)11:6<279::AID-JBT3>3.0.CO;2-H
  15. Park, C. H., Kim, S. H., Choi, W., Lee, Y. J., Kim, J. S., Kang, S. S., and Suh, Y. H., Novel anticholinesterase and antiamnesic activities of dehydroevodiamine, a constituent of Evodia rutaecarpa. Planta Med., 62, 405-409(1996) https://doi.org/10.1055/s-2006-957926
  16. Perry, E. K., The cholinergic hypothesis-ten years on. Br. Med. Bull., 42, 63-69 (1986) https://doi.org/10.1093/oxfordjournals.bmb.a072100
  17. Riger, F., Shelanski, M. L., and Greene, L. A., The effects of nerve growh factor on acetylcholinesterase and its multiple forms in cultures of rat PC12 pheochromocytoma cells;increased total specific activity and appearance of the 16 S molecular form. Dev. BioI., 76, 238-243 (1980) https://doi.org/10.1016/0012-1606(80)90376-0
  18. Tani, C., Nagakura, N., and Sugiyama, N., Studies on the alkaloids of Papaveraceous plants. XXI. Alkaloids of Corydalis speciosa Maxim. (1). The isolation of the tertiary bases by the multi-buffered D.C.C.C. Yakugaku Zasshi, 95(7), 838-842 (1975a) https://doi.org/10.1248/yakushi1947.95.7_838
  19. Tani, C., Nagakura, N., and Hattori, S., Structures of corynoxidine and epicorynoxidine, new alkaloids from Corydalis koidzumiana. Chem. Lett., 1081-1084(1975b)