Changes in Acidity and Distributions of the Vancomycin-Resistant Lactic Acid Bacteria in the Kimchi Fermented at Different Temperatures

발효 온도에 따른 김치의 산도 변화와 Vancomycin 내성 젖산균의 분포

  • 정의숙 (연세대학교 응용과학부 생물자원공학과) ;
  • 김기환 (연세대학교 응용과학부 생물자원공학과) ;
  • 신원철 (강원대학교 바이오산업공학부) ;
  • 송광영 (연세대학교 생리활성소재연구소) ;
  • 윤성식 (연세대학교 생리활성소재연구소)
  • Published : 2004.09.01

Abstract

Chinese cabbage ('Baechu') Kimchi was fermented at the three different temperatures right after it was prepared. Samples were taken everyday for measuring bacterial populations, pH, and titratable acidity through the whole periods of fermentation up to 50 days. pH values and developed acidity were significantly affected by the fermenting temperatures of 4, 10, and $20^{\circ}C$, suggesting that different bacterial flora has been established by the temperatures exposed. The modified MRS agar containing vancomycin (300 $\mu$g/mL) was used for isolating the vancomycin-resistant LAB strains and 127 isolates were finally obtained. Of the LAB isolates, 13 isolates were subjected to the identification experiments based on the biochemical characteristics and the molecular-typing approach, an ITS-PCR, whether they belong to the genus Leuconostoc or not. The data obtained from API 50 CHL kit resulted that six isolates were identified as the members of Leuconostoc and six as Lactobacillus brevis strains except for a single isolate YKI 30-0401, which was not able to be identified because its biochemical traits were not matched to the database of API 50 CHL kit. It was noted that some isolates were distinct in a couple of some biochemical characteristics compared with those of the reference Leuconostoc species. To overcome the limitations experienced in the commercial identification products above, an ITS-PCR experiment was also conducted for the isolates, resulting that eight isolates belong to Leu. mesenteroides ssp. mesenteroides or dextranicum with a single band of 564 bp, and four to L. brevis strains. The ITS-PCR profiles clearly differentiated the closely-related LAB isolates for which same results were obtained by the biochemical method. This molecular approach, however, failed to produce the amplicons for the YKI 20-1003, leaving the strain unidentified. Judging from the identification data obtained in the Kimchi fermented at $4^{\circ}C$ or $10^{\circ}C$, Leuconostoc spp. including Leu. mesenteroides/dextranicum were likely predominant species in the earlier stage and L. brevis occurred at the high level through the whole period. By contrast, L. brevis, as one of the major flora, possibly lead the fermentation from the beginning in the Kimchi fermented at $20^{\circ}C$.}C$.

배추김치를 담근 직후 $4^{\circ}C$, $10^{\circ}C$, 그리고 $20^{\circ}C$에서 최고 50일까지 발효시키면서 매일 시료를 취하여 pH 및 적정산도의 변화를 경시적으로 관찰하였다. pH 와 산도는 발효온도에 따라서 크게 영향을 받은 것으로 나타났으며 이러한 결과는 발효 김치중의 미생물학적 성상이 발효 온도에 따라서 상당하게 달라진다는 점을 암시하였다. 각 발효 온도별로 숙성 김치의 상미범위로 알려진 적정산도 0.6~0.8%(pH 4.2)에 도달하여 유지되는 시간을 보면 $4^{\circ}C$에서는 20~30일, 1$0^{\circ}C$에서는 3~5일 그리고 $20^{\circ}C$에서는 1~2일이 소요되었다. 각 김치 시료로부터 vancomycin(300$\mu$g/m1)이 함유된 modified Lactobacilli MRS agar를 이용하여 vancomycin에 대한 내성을 나타내는 127주를 분리하였다. 이 중에서 저온에서 분리한 균주를 중심으로 13개를 선택하여 생화학적 동정(API 50 CHL kit)을 실시함으로서 분리균 중 Leuconostoc 속 균주가 차지하는 비율을 검토한 결과 Leuconostoc 속과 Lactobacillus 속은 각각 6 균주로 나타났으며, 한 균주는 생화학적 동정이 불가능하여 아직 보고되지 않은 새로운 균종으로 추정되었다. 생화학적 방법의 재현성이 문제가 되어 다시 ITS-PCR법을 사용하여 동정하였다. 그 결과 8 균주는 크기가 564 bp인 1개의 DNA 밴드를 형성하였으며, Leuconostoc mesenteroides ssp. mesenteroides/dextraniucm로 동정되었다. 또 3개의 DNA밴드를 나타낸 4개의 균주는 L. brevis로 동정 되었으나 1 균주는 ITS-PCR법으로도 동정할 수 없었다. 본 연구의 결과로 미루어 볼 때 4~$10^{\circ}C$ 발효초기에는 Leuconostoc 속이 우점 세균으로 지목되었고 발효기간이 경과 할수록 L. brevis도 김치의 균총에서 상당한 부분을 차지할 것으로 추정된다. 이에 반해서 $20^{\circ}C$에서는 Leuconostoc속 균주가 우세하게 출현할 것이라는 예상과는 달리 발효 초기부터 L. brevis와 같은 세균이 발효를 주도하는 균종으로 생각되었다.

Keywords

References

  1. The Lactobacilli, Pediococi, and Leuconostocs:vegerable products Fleming,H. P.;R. F. McFeeters;M. A. Daeschel
  2. J. Milk Food Technol. v.8 Growth rates and fermentation patterns of lactic acid bacteria associated with the sauekraut fermentation Stamer, J. R.;B. O. Stoyla;B. A. Dunckel
  3. Bergy's Manual of Systematic Bacteriology v.2 The genus leuconostoc Garvie, E. I.;Sneath, P. H. A(Ed.).;N. S. Mair(Ed.);M. E. Sharpe(Ed.);J. G. Holt(Ed.)
  4. Kor. J. Appl. Microbiol. Biotechnol. v.20 Microbial changes of the lactic acid bacteria during Kimchi fermentation and identification of the isolates Lee, C. W.;C. Y. Ko;D. M. Ha
  5. J. Dairy Sci. v.78 Taxonomy of the Leuconostocs Thunell, R. K. https://doi.org/10.3168/jds.S0022-0302(95)76881-3
  6. Int. J. Syst. Evol. Microbiol. v.50 Leuconostoc Kimchi, a new species from kimchi Kim, J.;J. Chun;H. Han https://doi.org/10.1099/00207713-50-5-1915
  7. J. Dairy Sci. v.77 Metabolism of Leuconostoc bacteria Cogan, T. M.;K. N. Jordan https://doi.org/10.3168/jds.S0022-0302(94)77213-1
  8. J. Dairy Sci. v.79 Citrate utilization and diacetyl production by various strains of Leuconostoc mesenteroides ssp. cremoris Levata-Jovanovic, M;W. E. Sandine https://doi.org/10.3168/jds.S0022-0302(96)76562-1
  9. J. Dairy Sci. v.77 The dairy Leuconostoc:Use in dairy products Vedamuthu, E. R. https://doi.org/10.3168/jds.S0022-0302(94)77215-5
  10. Int. Dairy. J. v.4 Selective enumeration of Leuconostoc on vancomycin agar media Mathot, A. G.;M. Kihal;H. Prevost;C. Divies https://doi.org/10.1016/0958-6946(94)90059-0
  11. Diagnostic Microbiol. Infec. Disease v.42 A PCR assay for rapid detection of vavcomycin-resistant enterococci Perez-Hermandez, X.;S.Mendez-Alvarez;F.Claverie-Martin https://doi.org/10.1016/S0732-8893(01)00360-1
  12. Appl. Environ. Microbiol. v.57 Detection and activity of a bacteriocin produced by Leuconostoc mesenteroides Daba, H.;S. Padian;J. F. Gossekin;R. E. Simard;J. Huang;C. Lacroix
  13. Appl. Environ. Microbiol. v.66 Characterization of Leuconostoc gasicomitatum sp. nov., associated with spoiled raw tomato-marinated broiler meat strips packaged under modified-atmosphere conditions Bjorkroth, K. J.;R. Geisen;U. Schillinger;N. Weiss;P. D. Vos;W. H. Holzapfel;H. J. Korkeala;P. Vandamme https://doi.org/10.1128/AEM.66.9.3764-3772.2000
  14. Kor. J. Food Sci. Technol. v.29 Studies on the genetic diversity using RAPD in Leuconostoc sp. isolated from kimchi Kim, E. K.;C. S. Ryu;M. H. So;Y. B.Kim
  15. FEMS Microbiol. Lett. v.187 Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group-and species-specific primers derived from the 16s-23s rRNA intergenic spacer region and its flanking 23s rRNA. Song, Y.;N. Kato;C. Liu;Y. Matsumiya;H. Kato;K. Watanabe
  16. Appl. Environ. Microbial. v.59 Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms Jensen, M. A.;J. A. Webster;N. Straus
  17. J. Kor. Nutr. Soc. v.30 Effects of Kimchi consumption on iron status in adult male volunteers Oh, Y. J.;I. J. Hwang
  18. Appl. Environ. Microbiol. v.59 Development and use of a selective medium for isolation of Leuconostoc spp. from vegetables and dairy products Benkeroum, N.;M. Misbah;W. E. Sandine;A. T. Elaraki
  19. Kor. J. Environ. Biol. v.9 Mictobial community dynamics during the degradation of waste cabbage on the soil-bed Hang, H. U.;S. J. Woo;Y. K. Ha
  20. Kor. J. food Sci. Technol. v.28 A new selective medium for the isolation and the detection of Leuconostoc in foodstuffs Choi, H. J.;Y. J. Shin;J. H. Yu;S. S. Yoon
  21. J. Rap. Meth. Auto. Microbiol. v.4 Identification of lactic acid bacteria by ribotyping Breidt, F.;H. P. Fleming https://doi.org/10.1111/j.1745-4581.1996.tb00125.x
  22. Korea Food Research Institute, Research Report E1421-0895 Control of kimchi fermentation by regulating microbial succession Lee, M. K.;Y. J. Nam;W. S. Park;S. I. Hong;I. H. Kim
  23. Kor. J. Food Sci. Technol. v.16 Effect of temperature and salt concentration on Kimchi fermentation Min, T. I.;T. W. Kwon
  24. Kor. J. food Sci. Technol. v.27 Effects of psychrotrophic lactic acid bacteria isolated from Kimchi So, M. H.;Y. B. Kim
  25. Kor. J. Food Sci. Technol. v.32 Genetic identification of the kimchi strain using PCR-based PepN and 16SrRNA gene sequence Lee, M. K.;W. S. Park;B. H. Lee
  26. Lett. Appl. Microbiol. v.4 Random amplified polymorphic DNA analysis for differentation of Leuconostoc mesenteroides subspecies isolated form Tenerife cheese Perez G;E. V. Cardell;Zarate
  27. Proceeding 2003 International Meeting of the Microbiological Society of Korea Analysis of microbial diversity in low-temperature fermented Kimchi Heo, G.-Y.;J. A. Park;Y. J. Oh;J. S. Lee;C. K. Kim;T. I. Mheen;J. S. Ahn.
  28. Appl. Environ. Microbiol. v.8 Differentiation of dextran-producing Leuconostoc strains by a modified randomly amplified polymorphic DNA protocol Hoit, S. M.;G. L. Cote
  29. FEMS Microbiol. Lett. v.193 Multiplex PCR-based detection and identification of Leuconostoc species Lee, H.-J.;S.-Y. Park;J. Kim https://doi.org/10.1111/j.1574-6968.2000.tb09431.x
  30. Antimicrob. Agents Chemother. v.34 Antimicrobial susceptibility of vancomycin-resistant Leuconostoc,Pediococcus, and Lactobacillus species Swensen, J. M.;Facklam, R. R.;C. Thornsberry https://doi.org/10.1128/AAC.34.4.543