Bifidobacterium longum의 Sucrose 대사 관련 scr 유전자군의 특성 규명

Characterization of the scr Gene Cluster Involved! in Sucrose Utilization in Bifidobacterium longum

  • 권태연 (경기대학교 식품생물공학과) ;
  • 이종훈 (경기대학교 식품생물공학과)
  • 발행 : 2004.09.01

초록

Bifidobacterium longum SJ32 균주로부터 cloning한 sucrose phosphorylase 유전자를 포함하는 8.6 kb의 EclRI 단편의 염기서열을 결정하였다. 5개의 open reading frame이 존재하였고, 상동성 검색의 결과, sucrose대사에 관여하는 sucrose phosphorylase (ScrP), sucrose transporter (ScrT), GalR-LacI-type transcriptional regulator (ScrR) 유전자의 존재를 확인하였다. SJ32 균주의 scrPTR 유전자군은 다른 B. longum균주의 scrPTR과 배열이 동일하고, 각 유전자 산물이 아미노산 수준에서 94%이상의 상동성을 가지고 있지만, 주변 유전자는 다르게 나타나 B. longum균주 간의 scrPTR 유전자군의 horizontal transfer를 추정하게 한다. 대장균에서의 scrP와 scrT의 동시 발현은 세포 내로의 sucrose 유입을 증가시켜 sucrose phosphorylase의 활성 증가에 영향을 주는 것으로 나타나, scrT가 sucrose transporter유전자임을 뒷받침한다. 기존에 보고된 B. longum NCC2705균주의 유전체로부터 scrPTR외에도 sucrose대사에 관여하는 다양한 sucrose multiple transport system에 관여하는 유전자의 존재가 확인되어, B. longum이 다양한 sucrose유입체계를 보유하고 있음이 추정된다.

The nucleotide sequence of 8.6-kb EcoRI fragment containing sucrose phosphorylase gene isolated from Bifidobacterium longum SJ32 was determined. It was found that the fragment contained five open reading frames including the gene cluster for sucrose utilization such as a sucrose phosphorylase (ScrP), a sucrose transporter (ScrT), and a GalR-LacI-type transcriptional regulator (ScrR) identified by amino acid homology. Each gene showed over 94% amino acid homology among various B. longum strains. Genomic organization of the gene cluster is the same as those of other strains of B. longum but different from that of B. lactis. In spite of high homology of each gene among B. longum strains, the difference of flanking sequences of the gene cluster between strains SJ32 and NCC2705 insinuates the horizontal transfer of scrPTR between B. longum strains. The increase of sucrose phosphorylase activity in heterologous E. coli system by the co-expression of scrT with scrP against the single expression of scrP was measured. It seems to be the result of sucrose uptake increment by scrT in the host and is an indirect evidence that scrT is the gene for sucrose transport. The existence of multiple sucrose uptake systems in B. longum is supposed from the findings of several genes besides scrPTR involved in sucrose uptake in the genome of B. longum NCC2705.

키워드

참고문헌

  1. Mol. Gen. Genet. v.233 Cloning and expression of a member of the Aspergillus niger gene family encoding alpha-galactosidase Den Herder, I. F.;A. M. Rosell;C. M. van Zuilen;P. J. Punt;C. A. van den Hondel https://doi.org/10.1007/BF00265437
  2. J. Dairy. Sic. v.73 Growth of bifidobacteria and their enzyme profiles Desjardins, M. L.;D. Roy;J. Goulet https://doi.org/10.3168/jds.S0022-0302(90)78673-0
  3. Biochem. J. v.280 A classification of glycosyl hydrolasec based on amion acid sequence similarities Henrissat. B https://doi.org/10.1042/bj2800309
  4. J. Food. Prot. v.56 Inhibition of Escherichia coli by bifidobacteria Ibrahim, S. A.;A. Bezkorovainy https://doi.org/10.4315/0362-028X-56.8.713
  5. Biotechnol. Lett. v.25 Cloning and expression of sucrose phosphorylase gene from Bifidobacterium lon-gum in E. coli and characterization of the recombinant enzyme Kim, M.;T. Kwon;H. J. Lee;K. H. Kim;D. K. Chung;G. E. Ji;E.-S. Byeon;J.-H. Lee https://doi.org/10.1023/A:1025035320983
  6. Biosci. Biotechnol. Biochem. v.56 Transglucosylation catalyzed by sucrose phosphorylase form Leuconostoc mesenteroides and production of glucosyl-xylitol Kitao, S.;H. Sekine https://doi.org/10.1271/bbb.56.2011
  7. Biosci. Biotech. Biochem. v.57 Screening for the immunop-otentiating activity of food microorganisms and enhance ment of the immune response by Bifidobacterium adolescentis M101-4 Lee, J.; A. Ametani;A. Enomoto;Y. Sato;H. Motoshima;F. Ike;S. Kaminogawa https://doi.org/10.1271/bbb.57.2127
  8. The enzymes v.7 Disaccharide phosphorylase Mieyal, J. J.;R. H. Abeles;P. D. Boyer(ed.) https://doi.org/10.1016/S1874-6047(08)60461-8
  9. FEBS Lett. v.377 Phylogenetic, struc-tural and functional analyses of the LacI-GalR famiy of bacterial transcription factors Nguyen, C. C.;M. H. Saier. Jr. https://doi.org/10.1016/0014-5793(95)01344-X
  10. Biosci. Bistechnol. Biochem. v.60 Cloning and nucleotide sequence of the ${\beta}$-D-glucosidase gene from Bifidobacterum breve clb, and expression of ${\beta}$-D-glucosidase activity in Escherichia coli Nunaura. N;K. Ohdan;K. Tanaka:H. Tamaki;T. Yano;M. Inui;H. Yukawa;K. Yamamoto;H. Kumagai https://doi.org/10.1271/bbb.60.2011
  11. Antonie van Leeuwenhoek v.82 Transporters and their roles in LAB cell physiology Poolman, B. https://doi.org/10.1023/A:1020658831293
  12. Microbiol. Rev. v.57 Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria Postma, P. W.;J. W. Lengeler;G. R. Jacobson
  13. Cancer Res. v.53 Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcino-genesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen Reddy, B. S.;A. Rivenson
  14. J. Biol. Chem. v.267 A binding protein-dependent transport system in Streptococcus mutans responsible for multiple sugar metabolism Russell, R. R.;J. Aduse-Opoku;I. C. Sutcliffe;L. Tao;J. J. Ferretti
  15. J. Bacteriol. v.171 Characterization and sequence analysis of the scrA gene encoding enzyme IIScr of the Streptococcus mutans phos-phoenolpyruvate-dependent sucrose phosphotransferase system Sato, Y.;F. Poy;G. R. Jacobson;H. K. Kuramitsu https://doi.org/10.1128/jb.171.1.263-271.1989
  16. Probiotics: a critical review Tannock, G. W.
  17. Appl. Environ. Microbiol. v.69 Industion of sucrose utilization genes from Bifidobacterium lactis by sucrose and raffinose Trindade, M. I.;V. R. Abratt;S. J. Reid https://doi.org/10.1128/AEM.69.1.24-32.2003
  18. Appl. Microbiol. Biotechnol. Physico-chemical and transglucosylation properties of recombinant sucrose phosphorylase from Bifidobacterium adolescentis DSM 20083 Van den Broek, L. A.;E. L. Van Boxtel;R. P. Kievit;R. Verhoef;G. Beldman;A. G. Voragen
  19. J. Agric. Food Chem. v.48 Fermentation of plant cell wall derived polysaccharides and their corresponding dligosaccharides by intesinal bacteria Van Laere, K. M.;Hartemink, M. Bosveld;H. A. Schols;A. G. Voragen https://doi.org/10.1021/jf990519i
  20. J. Bioteshnol. v.92 Modeling of inducer exclusion and catabolite repression based on a PTS-dependent sucrose nad non-PTS-dependent glycerol transport systems in Escherichia coli K-12 and its experimental verification Wang, J.;E. D. Gilles;J. W. Lengeler;K. Jahreis