Screening and Characterization of Secretion Signals from Lactococcus lactis ssp. cremoris LM0230

  • Jeong, Do-Won (School of Agricultural Biotechnology and Department of Food Science and Technology, Seoul National University) ;
  • Choi, Youn-Chul (School of Agricultural Biotechnology and Department of Food Science and Technology, Seoul National University) ;
  • Lee, Jung-Min (School of Agricultural Biotechnology and Department of Food Science and Technology, Seoul National University) ;
  • Seo, Jung-Min (School of Agricultural Biotechnology and Department of Food Science and Technology, Seoul National University) ;
  • Kim, Jeong-Hwan (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Lee, Jong-Hoon (Department of Food Science and Biotechnology, Kyonggi University) ;
  • Kim, Kyoung-Heon (Division of Food Science, College of Life and Environmental Sciences, Korea University) ;
  • Lee, Hyong-Joo (School of Agricultural Biotechnology and Department of Food Science and Technology, Seoul National University)
  • Published : 2004.10.01

Abstract

A secretion signal sequence-selection vector (pGS40) was constructed based on an $\alpha$-amylase gene lacking a secretion signal and employed for selecting secretion signals from Lactococcus lactis ssp. cremoris LM0230 chromosomal DNA. Six fragments were identified based on their ability to restore $\alpha$-amylase secretion in E. coli, and among these, a fragment, S405, conferred the highest secretion activity (84%) in E. coli. Meanwhile, S407, which conferred poor secretion activity in E. coli, was quite active in L. lactis. The results suggested that the efficiency of a secretion signal depended on the host. All six fragments had an open reading frame (ORF) fused to the reporter gene, and the potential Shine-Dalgamo (SD) sequence and putative promoter sequences were located upstream of the ORF. Deduced amino acid sequences from the six fragments did not show any homology with known secretion signals. However, they contained three distinguished structural features and cleavage sites, commonly found among typical secretion signals. The characterized secretion signals could be useful for the construction of food-grade secretion vectors and gene expression in LAB.

Keywords

References

  1. Collier, D. N. 1994. Escherichia coli signal peptides direct inefficient secretion of an outer membrane protein (OmpA) and periplasmic proteins (maltose binding protein, ribosebinding protien, and alkaline phosphatase) in Bacillus subtilis.J. Bacteriol. 176: 3013- 3020.
  2. De Rutter, G. G. A., O. P. Kuipers, and W. M. de Vas. 1997. Controlled overproduction of proteins by lactic acid bacteria. Tib. Tech. 15: 135- 140.
  3. De Vos, W. M. and G. Simons. 1994. Gene cloning and expression systems in Lactococci, pp. 53- 103. In M. J. Gasson and W. M. De Vos (eds.), Genetics and Biotechnology of Lactic Acid Bacteria. Blackie Academic & Professional, Glasgow.
  4. Horinouchi, S. and B. Weisblum. 1982. Nucleotide sequence and map of pE194, a plasmid that specifies inducible resistance to macrolide, lincosamide, and streptogramin type B antibiotics. J. Bacteriol. 150: 804- 814.
  5. Jan, K., K. J. Leenhouts, A. J. Haandrikman, A. M. Ledeboer, and G. Venema. 1988. Nucleotide sequence of the cell wall proteinase gene of Streptococcus cremoris Wg2. Appl. Environ. Microbiol. 54: 231-238.
  6. Lee, K.-H., G.-S. Moon, J.-Y. An, H.-J. Lee, H. C. Chang, D. K Chung, J.-H. Lee, and J. H. Kim. 2002. Isolation of a nisin-producing lactococcus lactis strain from kimchi and characterization of its nisZ gene. J. Microbiol. Biotechnol. 12: 389- 397.
  7. Lee, M.-H., J. J. Song, Y.-H. Choi, S.-P. Hong, E. Rha, H. K. Kim, S.-G. Lee, H. Poo, S. C. Lee, Y. B. Seu, and M.-H. Sung. 2003. High-level expression and secretion of Bacillus pumilus lipase B26 in Bacillus subtilis chungkookjang. J. Microbiol. Biotechnol. 13: 892- 896.
  8. Miller, G. L. 1959. Use of dinitrosalycylic acid reagent for determination reducing sugar. Anal. Chem. 31: 426- 428. https://doi.org/10.1021/ac60147a030
  9. Nielsen, H. and A. Krogh. 1998. Proceedings of the $6^{th}$ International Conference on Intelligent Systems for Molecular Biology, pp. 122- 130, California, U.S.A.
  10. Park, R.-1., K.-H. L., S.-J. Kim, J.-Y. Park, S.-J. Nam, H.-D. Yun, H.-1. Lee, H. C. Chang, D. K. Chung, J.-H. Lee, Y. H. Park, and J.-H. Kim. 2002. Isolation of Lactococcus lactis Strain with $\beta$-galactosidase activity from kimchi and cloning of lacZ gene from the isolated strain. J. Microbiol. Biotechnol. 12: 157- 161.
  11. Van Asseldonk, M., G. Rutten, M. Oteman, R. J. Siezen, W. M. de Vos, and G. Simons. 1990. Cloning of usp45, a gene encoding a secreted protein from Lactococcus lactis subsp. lactis MG1363. Gene 95: 155-160.
  12. Van de Guchte, M., J. M. B. M. van der Vossen, K Jan, and G. Venema. 1989. Construction of a lactococcal expression vector: Expression of hen egg white lysozyme in Lactococcus lactis subsp. lactis. Appl. Environ. Microbiol. 55: 224- 228.
  13. Van der Vossen, J. M. B. M., D. Van der Lelie, and G. Venema. 1987. Isolation and characterization of Streptococcus cremoris Wg2-specific promoters. Appl. Environ. Microbiol. 53: 2452- 2457.
  14. Von Heijine, G. 1986. A new method for predicting signal sequence cleavage sites. Nucleic Acids Res. 14: 4683- 4690.
  15. Von Heijine, G. and L. Abrahamen. 1989. Species specific variation in signal peptide design. Implication for protein secretion in foreign hosts. FEBS Lett. 244: 439- 446.
  16. Von Heijine, G. 1990. The signal peptide. J. Membr. BioI. 115: 195- 201.
  17. Witholt, B., M. Boekhout, M. Brock, J. Kingma, H. V. Heerikhuizen, and L. D. Leij. 1976. An efficient and reproducible procedure for the formation of spheroplasts from variously grown Escherichia coli. Anal. Biochem. 74: 160-170.