• Title/Summary/Keyword: Signal-sequence selection vector

Search Result 5, Processing Time 0.022 seconds

Screening and Characterization of Secretion Signals from Lactococcus lactis ssp. cremoris LM0230

  • Jeong, Do-Won;Choi, Youn-Chul;Lee, Jung-Min;Seo, Jung-Min;Kim, Jeong-Hwan;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.5
    • /
    • pp.1052-1056
    • /
    • 2004
  • A secretion signal sequence-selection vector (pGS40) was constructed based on an $\alpha$-amylase gene lacking a secretion signal and employed for selecting secretion signals from Lactococcus lactis ssp. cremoris LM0230 chromosomal DNA. Six fragments were identified based on their ability to restore $\alpha$-amylase secretion in E. coli, and among these, a fragment, S405, conferred the highest secretion activity (84%) in E. coli. Meanwhile, S407, which conferred poor secretion activity in E. coli, was quite active in L. lactis. The results suggested that the efficiency of a secretion signal depended on the host. All six fragments had an open reading frame (ORF) fused to the reporter gene, and the potential Shine-Dalgamo (SD) sequence and putative promoter sequences were located upstream of the ORF. Deduced amino acid sequences from the six fragments did not show any homology with known secretion signals. However, they contained three distinguished structural features and cleavage sites, commonly found among typical secretion signals. The characterized secretion signals could be useful for the construction of food-grade secretion vectors and gene expression in LAB.

Development of a Food-Grade Integration Vector for Heterologous Gene Expression and Protein Secretion in Lactococcus lactis

  • Jeong, Do-Won;Lee, Jong-Hoon;Kim, Kyoung-Heon;Lee, Hyong-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1799-1808
    • /
    • 2006
  • A food-grade integration vector based on site-specific recombination was constructed. The 5.7-kb vector, pIMA20, contained an integrase gene and a phage attachment site originating from bacteriophage A2, with the ${\alpha}$-galactosidase gene from Lactobacillus plantarum KCTC 3104 as a selection marker. pIMA20 was also equipped with a controllable promoter of nisA ($P_{nisA}$) and a signal peptide-encoding sequence of usp45 ($SP_{usp45}$) for the production and secretion of foreign proteins. pIMA20 and its derivatives mediated site-specific integration into the attB-like site on the Lactococcus lactis NZ9800 chromosome. The vector-integrated recombinant lactococci were easily detected by the appearance of blue colonies on a medium containing $X-{\alpha}-gal$ and also by their ability to grow on a medium containing melibiose as the sole carbon source. Recombinant lactococci maintained these traits in the absence of selection pressure during 100 generations. The ${\alpha}-amylase$ gene from Bacillus licheniformis, lacking a signal peptide-encoding. sequence, was inserted downstream of $P_{nisA}\;and\;SP_{usp45}$ in pIMA20, and the plasmid was integrated into the L. lactis chromosome. ${\alpha}-Amylase$ was successfully produced and secreted by the recombinant L. lactis, controlled by the addition and concentration of nisin.

Efficient Gene Targeting using Nuclear Localization Signal (NLS) and Negative Selection Marker Gene in Porcine Somatic Cells

  • Kim, Hye Min;Lee, Sang Mi;Park, Hyo Young;Kang, Man-Jong
    • Reproductive and Developmental Biology
    • /
    • v.38 no.2
    • /
    • pp.71-77
    • /
    • 2014
  • The specific genetic modification in porcine somatic cells by gene targeting has been very difficult because of low efficiency of homologous recombination. To improve gene targeting, we designed three kinds of knock-out vectors with ${\alpha}1,3$-galactosyltransferase gene (${\alpha}1,3$-GT gene), DT-A/pGT5'/neo/pGT3', DT-A/NLS/pGT5'/neo/pGT3' and pGT5'/neo/ pGT3'/NLS. The knock-out vectors consisted of a 4.8-kb fragment as the 5' recombination arm (pGT5') and a 1.9-kb fragment as the 3' recombination arm (pGT3'). We used the neomycin resistance gene (neo) as a positive selectable marker and the diphtheria toxin A (DT-A) gene as a negative selectable marker. These vectors have a neo gene insertion in exon 9 for inactivation of ${\alpha}1,3$-GT locus. DT-A/pGT5'/neo/pGT3' vector contain only positive-negative selection marker with conventional targeting vector. DT-A/NLS/pGT5'/neo/pGT3' vector contain positive-negative selection marker and NLS sequences in upstream of 5' recombination arm which enhances nuclear transport of foreign DNA into bovine somatic cells. pGT5'/neo/pGT3'/NLS vector contain only positive selection marker and NLS sequence in downstream of 3' recombination arm, not contain negative selectable marker. For transfection, linearzed vectors were introduced into porcine ear fibroblasts by electroporation. After 48 hours, the transfected cells were selected with $300{\mu}g/ml$ G418 during 12 day. The G418-resistant colonies were picked, of which 5 colonies were positive for ${\alpha}1,3$-GT gene disruption in 3' PCR and southern blot screening. Three knock-out somatic cells were obtained from DT-A/NLS/ pGT5'/neo/pGT3' knock-out vector. Thus, these data indicate that gene targeting vector using nuclear localization signal and negative selection marker improve targeting efficiency in porcine somatic cells.

Modeling and Direct Power Control Method of Vienna Rectifiers Using the Sliding Mode Control Approach

  • Ma, Hui;Xie, Yunxiang;Sun, Biaoguang;Mo, Lingjun
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.190-201
    • /
    • 2015
  • This paper uses the switching function approach to present a simple state model of the Vienna-type rectifier. The approach introduces the relationship between the DC-link neutral point voltage and the AC side phase currents. A novel direct power control (DPC) strategy, which is based on the sliding mode control (SMC) for Vienna I rectifiers, is developed using the proposed power model in the stationary ${\alpha}-{\beta}$ reference frames. The SMC-based DPC methodology directly regulates instantaneous active and reactive powers without transforming to a synchronous rotating coordinate reference frame or a tracking phase angle of grid voltage. Moreover, the required rectifier control voltages are directly calculated by utilizing the non-linear SMC scheme. Theoretically, active and reactive power flows are controlled without ripple or cross coupling. Furthermore, the fixed-switching frequency is obtained by employing the simplified space vector modulation (SVM). SVM solves the complicated designing problem of the AC harmonic filter. The simplified SVM is based on the simplification of the space vector diagram of a three-level converter into that of a two-level converter. The dwelling time calculation and switching sequence selection are easily implemented like those in the conventional two-level rectifier. Replacing the current control loops with power control loops simplifies the system design and enhances the transient performance. The simulation models in MATLAB/Simulink and the digital signal processor-controlled 1.5 kW Vienna-type rectifier are used to verify the fast responses and robustness of the proposed control scheme.

A Survey of Genetic Programming and Its Applications

  • Ahvanooey, Milad Taleby;Li, Qianmu;Wu, Ming;Wang, Shuo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.1765-1794
    • /
    • 2019
  • Genetic Programming (GP) is an intelligence technique whereby computer programs are encoded as a set of genes which are evolved utilizing a Genetic Algorithm (GA). In other words, the GP employs novel optimization techniques to modify computer programs; imitating the way humans develop programs by progressively re-writing them for solving problems automatically. Trial programs are frequently altered in the search for obtaining superior solutions due to the base is GA. These are evolutionary search techniques inspired by biological evolution such as mutation, reproduction, natural selection, recombination, and survival of the fittest. The power of GAs is being represented by an advancing range of applications; vector processing, quantum computing, VLSI circuit layout, and so on. But one of the most significant uses of GAs is the automatic generation of programs. Technically, the GP solves problems automatically without having to tell the computer specifically how to process it. To meet this requirement, the GP utilizes GAs to a "population" of trial programs, traditionally encoded in memory as tree-structures. Trial programs are estimated using a "fitness function" and the suited solutions picked for re-evaluation and modification such that this sequence is replicated until a "correct" program is generated. GP has represented its power by modifying a simple program for categorizing news stories, executing optical character recognition, medical signal filters, and for target identification, etc. This paper reviews existing literature regarding the GPs and their applications in different scientific fields and aims to provide an easy understanding of various types of GPs for beginners.