GroEL/ES Chaperone and Low Culture Temperature Synergistically Enhanced the Soluble Expression of CGTase in E. coli

  • Park, So-Lim (Department of Biotechnology & Bioengineering, Dong-Eui University) ;
  • Kwon, Mi-Jung (Department of Biotechnology & Bioengineering, Pukyong National University) ;
  • Kim, Sung-Koo (Neo Pharm, BVC 307, KRIBB) ;
  • Nam, Soo-Wan (Department of Biotechnology & Bioengineering, Pukyong National University)
  • Published : 2004.02.01

Abstract

The effect of culture temperature on the production of soluble form of B. macerans cyclodextrin glucanotransferase (CGTase) in recombinant E. coli was investigated. E. coli cell was cotransformed with two plasmids (pTCGT1 and pGroll) in which the cgt and groEL/ES genes are under the control of T7 promoter and pzt-1 promoter, respectively. When tetracycline (10 ng/ml) and IPTG (l mM) were added as inducers at the early-exponential phase (2 h) and mid-exponential phase (3h), respectively, the solubilization of the inclusion body CGTase was greatly dependent on the temperature of the culture. At low culture temperature of $25^\circ{C}$, 2- or 3-fold higher activity and specific activity were obtained over $37^\circ{C}$. SDS-PAGE analysis revealed that about 62% of CGTase in the total CGTase protein was found in the soluble fraction by applying overexpression of GroEL/ES chaperone and by cultivation of E. coli at $25^\circ{C}$, whereas 33% of CGTase was detected in the soluble fraction at $37^\circ{C}$. Therefore, the expression of GroEL/ES and cultivation at $25^\circ{C}$ greatly enhanced the soluble production of CGTase in E. coli.

Keywords

References

  1. Chrunyk, B. A., J. Evans, J. Lillqust, P. Young, and R. Wetzel. 1993. Inclusion body formation and protein stability in sequence variants of interleukin-1. J. Biol. Chem. 268: 18053-18061
  2. Dipti, S., S. Rakesh, and M. W. Rakesh. 2001. Chaperoneassisted overexpression of an active D-carbamoylase from Agrobacterium tumefaciens AM10. Proteion Expression Purif. 23: 374-379
  3. Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottesman, and V. Nikiforov. 1992. Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341-10344
  4. Han, N. S. and B. Y. Tao. 1999. Enhancement of solubility of Bacillus macerans cyclodextrin glucanotransferase by thioredoxin fusion. Food Sci. Biotechnol. 8: 276-279
  5. Jin, H. H., N. S. Han, D. K. Kweon, Y. C. Park, and J. H. Seo. 2001. Effects of environmental factors on in vivo folding of Bacillus macerans cyclodextrin glycosyltransferase in recombinant Escherichia coli. J. Microbiol. Biotechnol. 11: 92-96
  6. Kim, C. I., M. D. Kim, Y. C. Park, N. S. Han, and J. H. Seo. 2000. Refolding of Bacillus macerans cyclodextrin glucanotransferase expressed as inclusion bodies in recombinant Escherichia coli. J. Microbiol. Biotechnol. 10: 632-637
  7. Klein, J. and P. Dhurjati. 1995. Protein aggregation kinetics in an Escherichia coli strain overexpressing a Salmonella typhimurium CheY mutant gene. Appl. Environ. Microbiol. 61: 1220-1225
  8. Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda. 2000. Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600-606
  9. Kwon, M. J., S. L. Rark, S. K. Kim, and S. W. Nam. 2002. Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005
  10. Lee, P. K. C. and B. Y. Tao. 1994. High-level expression of cyclodextrin glucanotransferase in E. coli using a T7 promoter expression system. Starch 46: 67-74
  11. Lee, S. C. and P. O. Olins. 1992. Effect of overproduction of heat shock chaperones GroESL and DnaK on human procollagenase production in Escherichia coli. J. Biol. Chem. 267: 2849-2852
  12. Lejeune, A., K. Sakaguchi, and T. Imanaka. 1989. A spectrophotometric assay for the cyclization activity of cyclomaltohexaose ($\alpha$-cyclodextrin) glucanotransferase. Anal. Biochem. 181: 6-11
  13. Nishihara, K., M. Kanemori, M. Kitagawa, H. Yanagi, and T. Yura. 1998. Chaperone coexpression plasmids: Differential and synergistic roles DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699
  14. Nishihara, K., M. Kanemori, H. Yanagi, and T. Yura. 2000. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66: 884-889
  15. Oh, Y. P., S. T. Jeong, D.-W. Kim, E.-C. Kim, and K.-H. Yoon. 2002. Simple purification of Shiga toxin B chain from recombinant Escherichia coli. J. Microbiol. Biotechnol. 12: 986-988
  16. Park, Y. C., C. S. Kim, N. S. Han, and J. H. Seo. 1995. Expression of cyclodextrin glucanotransferase from Bacillus macerans in recombinant Escherichia coli. Foods Biotechnol. 4: 290-295
  17. Piatak, M., J. A. Lane, W. Laird, M. J. Bjorn, A. Wang, and M. Williams. 1988. Expression of soluble and fully functional ricin a chain in Escherichia coli is temperature sensitive. J. Biol. Chem. 263: 4837-4843
  18. Sachiko, M., Y. Yu, S. P. Singh, J. D. Kim, K. Hayashi, and Y. Kawata. 1998. Overproduction of $\beta$-glucosidase in active form by an Escherichia coli system coexpressing the chaperonin GroEL/ES. FEBS Microbiol Lett. 159: 41-46
  19. Standberg, L. and S. O. Enfors. 1991. Factors influencing inclusion body formation in the production of a fused protein in Escherichia coli. Appl. Environ. Microbiol. 57: 1669- 1674
  20. Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F. U. Hartl. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91: 10345- 10349
  21. Thomas, J. G., A. Ayling, and F. Baneyx. 1997. Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66: 197-238
  22. Troned, L., I. Monica, B. Camilla, M. Tarja, E. M. Tom, and W. N. Erik. 2001. Expression of active human C1 inhibitor serpin domain in E. coli. Protein Expression Purif. 22: 349- 358 https://doi.org/10.1006/prep.2001.1445
  23. Wall, J. G. and A. Pluckthun. 1995. Effects of overexpressing folding modulators on the in vivo folding of heterologous proteins in Escherichia coli. Curr. Opin. Biotechnol. 6: 507- 516
  24. Weissman, J. S., C. M. Hohl, O. Kovalenko, Y. Kashi, S. Chen, K. Braig, H. R. Saibil, W. A. Fenton, and A. L. Horwich. 1995. Mechanism of GroEL action: Productive release of polypeptide from a sequestered position under GroES. Cell 83: 577-587
  25. Weissman, J. S., H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich. 1996. Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490
  26. Wetzel, R. and B. A. Chrunyk. 1994. Inclusion body formation by interleukin-1 depends on the thermal sensitivity of a folding intermediate. FEBS Lett. 350: 245-248
  27. Ziemienowicz, A., D. Skowyra, J. Zeilstra-Ryalls, O. Fayet, C. Georgopoulos, and M. Zylicz. 1993. Both the Escherichia coli chaperone systems, GroEL/GroES and DnaK/DnaJ/ GrpE, can reactivate heat-treated RNA polymerase. J. Biol. Chem. 268: 25425-25431