Morphology and Properties of Polyacrylonitrile/Single Wall Carbon Nanotube Composite Films

  • Kim, Seong Hoon (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Min, Byung Ghyl (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Lee, Sang Cheol (School of Advanced Materials and System Engineering, Kumoh National Institute of Technology) ;
  • Park, Sung Bum (Department of Physics, Kumoh National Institute of Technology) ;
  • Lee, Tae Dong (Department of Physics, Kumoh National Institute of Technology) ;
  • Park, Min (Polymer Hybrid Research Center, Korea Institute of Science and Technology) ;
  • Kumar, Satish (School of Polymer, Textile and Fiber Engineering, Georgia Institute of Technology)
  • Published : 2004.09.01

Abstract

Composite films were prepared by casting the solution of polyacrylonitrile (PAN) and single wall nanotube (SWNT) in DMF subsequent to sonication. The SWNTs in the films are well dispersed as ropes with 20-30 nm thickness. Moreover, AFM surface image of the composite film displays an interwoven fibrous structure of nanotubes which may give rise to conductive passways and lead to high conductivity. The polarized Raman spectroscopy is an ideal characterization technique for identification and the orientation study of SWNT. The well-defined G-peak intensity at 1580 $cm^{-1}$shows a dependency on the draw ratio under cross-Nicol. The degree of nanotube orientation in the drawn film was measurable from the sine curve obtained by rotating the drawn film on the plane of cross-Nicol of polarized Raman microscope. The threshold loading of SWNT for electrical conductivity in PAN is found to be lower than 1 wt% in the composite film. The electrical conductivity of the SWNT/PAN composite film decreased with increasing of draw ratio due to the collapse of the interwoven fibrous network of the nanotubes with uniaxial orientation.

Keywords

References

  1. S. Iijima and T. Ichihashi, Natu 363, 603 re,(1993) https://doi.org/10.1038/363603a0
  2. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. V. Savoy, and R. Beyers, Nature, 363, 605 (1993) https://doi.org/10.1038/363605a0
  3. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, 'Physical Properties of Carbon Nanotubes', Imperial College Press, London,1998
  4. M. F. Yu, B. S. Files, S. Arepalli, and R. S. Ruoff, Phys. Rev. Lett., 84, 5552 (2000) https://doi.org/10.1103/PhysRevLett.84.5552
  5. J. P. Lu, Phys. Rev. Lett., 79, 1297 (1997) https://doi.org/10.1103/PhysRevLett.79.1297
  6. B. I. Yakobson and R. E. Smalley, Science, 85, 324 (1997)
  7. T. Liu, T. V. Sreekumar, S. Kumar, R. H. Hauge, and R. E. Smalley, Carbon, 41, 2440 (2003) https://doi.org/10.1016/S0008-6223(03)00245-8
  8. A. Chatterjee and B. L. Deopura, Fiber Polym., 3(4), 134 (2002) https://doi.org/10.1007/BF02912657
  9. J.-E. Huang, X.-H. Li, J-C. Xu, and H-L. Li, Carbon, 41, 2731 (2003) https://doi.org/10.1016/S0008-6223(03)00359-2
  10. M. S. P. Shaffer and A. H. Windle, Adv. Mater., 11, 937 (1999)
  11. B. Z. Tang and H. Y. Xu, Macromolecules, 32, 2569 (1999) https://doi.org/10.1021/ma981825k
  12. D. B. Romero, M. Carrard, W. A. de Heer, and L. Zuppiroli, Adv. Mater., 8, 899 (1996) https://doi.org/10.1002/adma.19960081105
  13. S. A. Curran, P. M. Ajayan, and A. Strevens, Adv. Mater., 10, 1091 (1998) https://doi.org/10.1002/(SICI)1521-4095(199810)10:14<1091::AID-ADMA1091>3.0.CO;2-L
  14. H. Ago, K. Petritsch, and M. S. P. Shaffer, Adv. Mater., 11, 1281 (1999) https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1281::AID-ADMA1281>3.0.CO;2-6
  15. A. Chatterjee and B. L. Deopura,, Fiber Polym., 4(3), 102 (2003) https://doi.org/10.1007/BF02875455
  16. M. S. P. Shaffer and A. H. Windle, Adv. Mater., 11, 937 (1999) https://doi.org/10.1002/(SICI)1521-4095(199908)11:11<937::AID-ADMA937>3.0.CO;2-9
  17. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte, and A. H. Windle, Polymer, 40, 5967 (1999) https://doi.org/10.1016/S0032-3861(99)00166-4
  18. E. Kymakis, I. Alexandou, and G. A. J. Amaratunga, Syn. Met., 127, 59 (2002) https://doi.org/10.1016/S0379-6779(01)00592-6
  19. J. M. Benoit, C. Benoit, S. Lefrant, P. Bernier, and O. Chauvet, Mater. Es. Soc. Symp. Proc., 706, Z3.28.1 (2002)
  20. A. R. Bhattacharyya, T. V. Sreekumar, T. Liu, S. Kumar, L. M. Ericson, R. H. Hauge, and R. E. Smalley, Polymer, 44, 2373 (2003) https://doi.org/10.1016/S0032-3861(03)00073-9
  21. T. V. Sreekumar, T. Liu, B. G. Min, H. Guo, S. Kumar, R. H. Hauge, and R. E. Smalley, Adv. Mater., 16, 58 (2004) https://doi.org/10.1002/adma.200305456
  22. S. Kumar, T. D. Dang, F. E. Arnold, A. R. Bhattacharyya, B. G. Min, X. Zhang, R. A. Vaia, C. Park, W. W. Adams, R. H. Hauge, R. E. Smalley, S. Ramesh, and P. A. Willis, Macromolecules, 35, 9039 (2003) https://doi.org/10.1021/ma0205055