Isolation and Expression of Aluminum Induced Protein(ClAIP) Gene from Codonopsis lanceolata

더덕에서 Aluminum Induced Protein (ClAIP) 유전자의 분리 및 발현분석

  • Published : 2004.10.01

Abstract

A cDNA clone (GenBank accession no. CF924621) homologous to aluminum induced protein gene was isolated and characterized from Codonopsis lanceolata (ClAIP). The ClAIP is 906 nucleotides long and has an open reading frame of 711 bp with a deduced amino acid sequence of 236 residues. The ClAIP shows high homology to A. marina (84%), G. hirsutum(83%), V. radiata (83%), A. thaliana (80%), B. nap us (78%) and T. aestivum (68%). The deduced amino acid sequence of ClAIP also has homology to the N-terminal end of plant Asn synthetase. This region does not contain the active sites of the enzyme and the significance of this conservation is currently not clear. To investigate the expression of ClAIP against several heavy metal stresses, we treated the sliced tap root of C. lanceolata with various heavy metals. The expression of ClAIP was increased by 25 uM $Al_2$(SO$_3$)$_4$ in proportion to incubation time and also increased by 50 uM CdCl$_2$.

더덕의 뿌리로부터 aluminum스트레스와 관련이 있는 aluminum induce protein(ClAIP)유전자를 분리하였다. ClAIP 유전자의 염기서열를 분석한 결과 906 bp 길이로, 236개의 아미노산으로 번역되는 711bp의 ORF를 가지고 있으며, A. marina(84%), G. hirsutum(84%), V. radiata(83%), A. thaliana(80%), B. hapus(78%), T. aestivum(68%) 등 다른 식물에서 밝혀져 있는 aluminum induce protein과 높은 상동성을 나타내었고, N-terminal에는 Asn synthetase영역이 존재하고 있다. 더덕에서 분리한 aluminum induced protein(ClAIP)을 aluminum처리 농도와 시간에 따른 ClAIP유전자의 발현양상을 알아보고자 50uM $Al^{3+}$ 를 처리 후 시간대별로 RT-PCR을 수행한 결과 시간이 지남에 따라 ClAIP유전자의 발현이 증가되는 것으로 나타났다 중금속, 염 , 온도에 대한 유전자의 발현양상을 조사하기 위 해 50uM CdCl,$_2$, 20 uM CuSO$_4$, 50uM Fe$_2$O$_3$, 100 uM NaCl를 2일과 42$^{\circ}C$에서 4시간 처리 후 발현량을 조사한 결과 카드뮴(Cd)에 대해서 특이적으로 반응하는 것으로 나타났다.

Keywords

References

  1. Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. 1990. Basic local alignment search tool. J. Mol BioI 215: 377-403-410
  2. Andrulis, I.L., J. Chen, and P.N. Ray. 1987. Isolation of human cDNAs for asparagine synthetase and expression in Jensen rat sarcoma cells. Mol. Cell BioI. 7: 2435-2443 https://doi.org/10.1128/MCB.7.7.2435
  3. Cakmak, I. and W.J. Horst. 1991. Effect of aluminium on lipid peroxida-tion, superoxide dismutase, catalase and peroxidase activities in root tips of soybean (Glycine max). Physiol. Plant 83: 463-468 https://doi.org/10.1111/j.1399-3054.1991.tb00121.x
  4. Clarkson, D.T. 1965. The effect of aluminium and some other trivalent metal cations on cell division in the root apices of Allium cepa. Ann. Bot. 29: https://doi.org/10.1093/oxfordjournals.aob.a083953
  5. Cruz-Ortega, R. and J.D. Ownby. 1993. A protein similar to PR(pathogenesis-related) proteins is elicited by metal toxicity in wheat roots. Physiol. Plant 89: 211-219 https://doi.org/10.1111/j.1399-3054.1993.tb01808.x
  6. Davies, K.M. and G.A. King. 1993. Isolation and characterisation of a cDNA clone for a harvest induced asparagine synthetase from Asparagus officinalis L. Plant Physiol. 102: 1337-1340 https://doi.org/10.1104/pp.102.4.1337
  7. Delhaize, E., T.J.V. Higgins. and P.J. Randall. 1991. Aluminum tolerance in wheat: analysis of polypeptides in the root apices of tolerant and sensitive genotypes. Zn RJ Wright, VC Baligar, RP Muinnann, eds, Plant-Soil Interactions at Low pH. Kluwer Academic I' ublishers, Dordrecht, The Netherlands, pp. 1071-1079
  8. Ezaki, B., M. Koyanagi, R.C. Gardner. and H. Matsumoto. 1997. Nucleotide sequence of a cDNA for GDP dissociation inhibitor (GDI) which is induced by aluminum (AI) ion stress in tobacco cell culture (accession no. AF012823) (PGR 97.133). Plant Physiol. 115: 314
  9. Ezaki, B.,S. Tsugita. and H. Matsumoto. 1996. Expression of a moderately anionic peroxidase is induced by aluminum treatment in tobacco cells: possible involvement of peroxidase isozymes in aluminum ion stress. Physiol. Plant 96: 21.28
  10. Ezaki, B., Y. Yamamoto. and H. Matsumoto. 1995. Cloning and sequencing of the cDNAs induced by aluminium treatment and Pi starvation in cultured tobacco cells. Physiol. Plant 93: 11.18
  11. Hamel, F., C. Breton. and M. Houde. 1998. Isolation and characterization of wheat aluminum-regulated genes: possible involvement of aluminum as a pathogenesis response elicitor. Planta 205: 531-538 https://doi.org/10.1007/s004250050352
  12. Haug, A. 1984. Molecular aspects of aluminum toxicity. CRC Crit Rev. Plant Sci. 1: 345-373 https://doi.org/10.1080/07352688409382184
  13. Kinraide, T.B and D.R. Parker. 1989. Assessing the phytotoxicity of mononuclear hydroxy-aluminum. Plant Cell Environ. 12: 479-487 https://doi.org/10.1111/j.1365-3040.1989.tb02120.x
  14. Morris, P.C., A. Kumar, D.J. Bowles. and A.C. Cuming. 1990. Osmotic stress and abscisic acid regulate the expression of the Em gene of wheat. Eur. J. Biochem. 190: 625-630 https://doi.org/10.1111/j.1432-1033.1990.tb15618.x
  15. Richards, K.D., E.J. Schott., Y.K. Sharma., K.R Davis. and R.C. Gardner. 1998. Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiol. 116: https://doi.org/10.1104/pp.116.1.409
  16. Scofield, M.A., W.S. Lewis. and S.M. Schuster. 1990. Nucleotide sequence of Esclzerichia coli asn B and deduced amino add sequence of asparagine synthetase B. J. BioI. Chem. 265: 12895-12902
  17. Snowden, K.C and R.C. Gardner. 1993. Five genes induced by aluminium in wheat (Triticum aestivum L.) Roots. Plant Physiol. 103: https://doi.org/10.1104/pp.103.3.855
  18. Snowden, K.C., K.D. Richards. and R.C. Gardner. 1995. Aluminum induced genes: induction by toxic metals, low calcium, and wounding and pattern of expression in root tips. Plant Physiol. 107: https://doi.org/10.1104/pp.107.2.341
  19. Sugimoto, M and W. Sakamoto. 1997. Putative phospholipid hydroperoxide glutathione peroxidase gene from Arabidopsis thaliana induced by oxidative stress. Genes Genet Syst. 72: 311-316 https://doi.org/10.1266/ggs.72.311
  20. Tsai, F-Y and G.M. Coruzzi. 1990. Dark-induced and organ specific expression of two asparagine synthetase genes in Pisum sativum. EMBO J. 9: 323-332
  21. Yamamoto, Y., A. Hachiya. and H. Matsumoto. 1997. Oxidative damage to membranes by a combination of aluminum and iron in suspension-cultured tobacco cells. Plant Cell Physiol. 38: 1333-1339 https://doi.org/10.1093/oxfordjournals.pcp.a029126