참고문헌
- Adams J. B., M. O. Smith, and A R. Gillespie, 1993. Imaging spectroscopy: Interpretation based on spectral mixture analysis. In C. M. Pieters & P. Englert (Eds.), Remote geochemical analysis: Elemental and mineralogical composition, New York: Cambridge University Press, pp.145-166
- Blaricom D. V., B. Savitsky, S. P. Petitgout, S. M.Jones, M. A. Karaska, and R. L. Huguenin, 1996. Classification of wetland gradient using subpixel detection of overstory indicator species in TM imagery, Proceedings of the Southern Forested Wetlands Ecology and Management Conference
- Boardman J. W., F. A. Kruse, and R. O. Green, 1995. Mapping target signatures via partial unmixing of AVIRIS data, in Summaries of the V JPL Airborne Earth Science Workshop, Pasadena, CA
- Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely sensed data, Remote Sensing of Environment, 37:35-46
- DiPietro D. Y., 2002. Mapping the Invasive Plant Arundo donax and Associated Riparian Vegetation Using Hyperspectral Remote Sensing, Master's Thesis of University of California, Davis, pp.3-8, pp.15-29
- Drake N. A., S. Mackin, and J .J. Settle, 1999. Mapping Vegetation, Soils, and Geology in Semiarid Shrublands Using Spectral Matching and Mixture Modeling of SWIR AVIRIS Image,Remote Sensing of Environment, 68: 12-25
- ENVI, 2002, ENVI Tutorial, Research Systems, Inc.,pp359-456
- Houhoulis P. F. and W. K. Michener, 2000. Detecting Wetland Change: A Rule-Based Approach Using NWI and SPOT-XS Data, PE & RS, 66(2): 205-212
- Kim D. S., 2003. A study of sub-pixel detection for hyperspectral imagery using the linear spectral mixing model, M. Sc. Thesis of Seoul National University, pp.21-28
- KimS. W. and C. H. Park,2003. Riparian identification using multi-temporal vegetation indices, Proceedings of the 2003 Joint Spring Meeting(KSRS), pp.170-175. (in Korean)
- Lee J. M. and K. S. Lee., 2003. Spectral mixture analysis in forest using Landsat-7 ETM+, Proceedings of the 2003 Joint Spring Meeting(KSRS), pp.157-162
- Lu D., M. Batistella, and E. Moran, 2002. Linear spectral mixture analysis of TM data for landuse and land-cover classification in Rodonia,Brazilian Amazon, Proceedings of Symposium on Geospatial Theory, Processing and Applications, Available online at: http://www.isprs.org/comrnission/proceedings/pdfpapers/175.pdf
- Patience, N. and V. V. Klemas. 1993. Wetland functional health assessment using remote sensing and other techniques: literature search, NOAA Technical Memorandum NMFSSEFSC-319,114p
- Roberts D. A., M. Gardner, R. Church, S. Ustin, G. Scheer, and R. O. Green, 1998. Mapping Chaparral in the Santa Monica Mountains using Multiple Endmembers Spectral Mixture Models, Remote Sensing of Environment, 65: 267-279
- Sabine C, A. F. H. Goetz, L. Krosley, and H. W. Olsen, 2002. Use of hyper spectral images in the identification and mapping of expansive clay soils and the role of spatial resolution, Remote Sensing of Environment, 82:431-445
- Tamura M., H. Shimazaki, H. Shimazaki, M. Tomodada, F. Makita, Z. Wenjin, and Y.Yasuoka, 1998, Differentiation of Wetland Areas in the West Siberian Lowland Using NOAA/AVHRR Imagery, ACRS, Available online at : http://www.gisdevelopment.net/aars/acrs/1998/ts12lts12005b.shtml
- Tian, X. Y., J. Y. Liu, S. E. Jorgensen, and Q. H. Ye,2003. Landscape change detection of the newly created wetland in Yellow River Delta, Ecological Modelling, 164: 21-31
- Tu T. M., P. S. Huang, and P. Y. Chen, 2001. Blind separation of spectral signatures in hyperspectral imagery, Proceedings of lEE Image Signal Process, 148(4) : 217-226
- Ustin, S. L., Q. J. Hart, L. Duan, and G. Scheer, 1996. Vegetation mapping on hardwood rangelands in California. International Journal of Remote Sensing, 17:3015-3036 https://doi.org/10.1080/01431169608949125
- van Wagtendonk J. W. and R. P. Root, 1999. Hyperspectral Analysis of Multi-Temporal Landsat TM Data for Mapping Fuels in Yosemite National Park, Proceedings from the Joint Fire Science Conference and Workshop, Available online at: http://www.werc.usgs.gov/yosemite/ma-09van- wagtendonketal.pdf
- Williams, D. J.,D. A. White, and A. Engelmann, 1999. Riparian characterization using sub-pixel analysis in an ecological risk framework, Proc.of the Am. Soc. for Photogrammetry and Remote Sens. Annual Conference, Portland
- Winter M. E., 1999. N-FINDER An algorithm for fast autonomous spectral endmember determination in hyperspectral data, in Proceedings of SPIE Imaging Spectrometry V, pp.266-275
- Wu C. and A. T. Murray, 2002. Estimating impervious surface distribution by spectral mixture analysis, Remote Sensing of Environment, 84:493-505