Potential Role of Ursodeoxycholic Acid in Suppression of Nuclear Factor Kappa B in Microglial Cell Line (BV-2)

  • Joo, Seong-Soo (Department of Immunology, College of Pharmacy, Chung-Ang University) ;
  • Won, Tae-Joan (Department of Immunology, College of Pharmacy, Chung-Ang University) ;
  • Lee, Do-Ik (Department of Immunology, College of Pharmacy, Chung-Ang University)
  • Published : 2004.09.01

Abstract

Expression of the NF-$textsc{k}$B-dependent genes responsible for inflammation, such as TNF-$\alpha$, IL-1$\beta$, and nitric oxide synthase (NOS), contributes to chronic inflammation which is a major cause of neurodegenerative diseases (i.e. Alzheimer's disease). Although NF-$textsc{k}$B plays a biphasic role in different cells like neurons and microglia, controlling the activation of NF-$textsc{k}$B is important for its negative feedback in either activation or inactivation. In this study, we found that ursodeoxycholic acid (UDCA) inhibited I$textsc{k}$B$\alpha$ degradation to block expression of the NF-$textsc{k}$B-dependent genes in microglia when activated by $\beta$-amyloid peptide (A$\beta$). We also showed that when microglia is activated by $A\beta$42, the expression of A20 is suppressed. These findings place A20 in the category of ' protective ' genes, protecting cells from pro-inflammatory reper-toires induced in response to inflammatory stimuli in activated microglia via NF-$textsc{k}$B activation. In light of the gene and proteins for NF-$textsc{k}$B-dependent gene and inactivator for NF-$textsc{k}$B (I$textsc{k}$B$\alpha$), the observations now reported suggest that UDCA plays a role in supporting the attenuation of the production of pro-inflammatory cytokines and NO via inactivation of NF-$textsc{k}$B. Moreover, an NF-$textsc{k}$B inhibitor such as A20 can collaborate and at least enhance the anti-inflammatory effect in microglia, thus giving a potent benefit for the treatment of neurodegenerative diseases such as AD.uch as AD.

Keywords

References

  1. Aisen, P. S. and Davis, K. L., Inflammatory mechanisms in Alzheimer's disease: implications for therapy. Am. J. Psychiatry, 28, 1105-1113 (1994)
  2. Akama, K. T., Albanese, C., Pestell, R. G., and van Eldik, L. J., Arnyloid-${\beta}$-peptide stimulates nitric oxide production in astrocytes through an NF-$\kappa$B-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A., 95, 5795-5800 (1998)
  3. Arenzana-Seisdedos, F., Thompson, J., Rodriguez, M. S., Bachelerie, F., Thomas, D., and Hau, R. T., Inducible nuclear. expression of newly synthesized $I_{\kappa}$,B_{\alpha}$ negatively regulates DNA-binding and transcriptional activities of NF-${\kappa}B$. Mol. Cell Biol., 15, 2689-2696 (1995) https://doi.org/10.1128/MCB.15.5.2689
  4. Baeuerle, P. A. and Baltimore, D., NF-${\kappa}B$: ten years after. Cell, 87, 13-20 (1996) https://doi.org/10.1016/S0092-8674(00)81318-5
  5. Baldwin, A. S., The NF-${\kappa}B$ and I kappa B proteins: new discoveries and insighs. Annu. Rev. Immunol., 14, 649-683 (1996) https://doi.org/10.1146/annurev.immunol.14.1.649
  6. Barger, S. W., Horster, D., Furukawa, K., Goodman, Y., Krieglstein, J., and Mattson, M.P., Tumor necrosis factors a and a protect neurons against amyloid ${\beta}$-peptide toxicity: evidences for involvement of a ${\kappa}B$-binding factor and attenuation of peroxide and $CO^{2+}$ accumulation. Proc. Natl. Acad. Sci. U.S.A., 92, 9328-9322 (1995) https://doi.org/10.1073/pnas.92.20.9328
  7. Bauer, J., Strauss, S., Schreiter-Gasser, U., Ganter, U., Schlegel, P., Witt, I., Yolk, B., and Berger, M., Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer's disease cortices. FEBS Lett., 285, 111-114 (1991) https://doi.org/10.1016/0014-5793(91)80737-N
  8. Behl, C., Davis, J. B., Lesley, R., and Schubert, D., Hydrogen peroxide mediates amyloid beta protein toxicity. Cell, 77, 817-827 (1994) https://doi.org/10.1016/0092-8674(94)90131-7
  9. Carter, B. D., Kaltschmidt, C., Kaltschmidt, B., Offenhauser, N., Bohm-Matthaei, R., Baeuerle, P. A., and Barde, Y. A., ctive activation of NF-${\kappa}B$ by nerve growth factor through the neurotrophin receptor p75. Science, 272, 542-545 (1996) https://doi.org/10.1126/science.272.5261.542
  10. Cjaza, A. J., Carpenter, H. A., and Lindor, K. D., Ursodeoxycholic acid as adjuvant therapy for type 1 autoimmune hepatitis: a randomized placebo-controlled treatment trial. Hepatology, 30, 1381-1386 (1999) https://doi.org/10.1002/hep.510300603
  11. Dhib-Jalbut, S. S., Xia, Q., Drew, P. D., and Swoveland, P. T., Differential up-regulation of HLA class I molecules on neuronal and glial cell lines by virus infection correlates with differential induction of IFN-beta. J. Immunol., 155, 2096-2108 (1995)
  12. Ferran, C., Stroka, D. M., Badrichani, A. Z., Cooper, J. T., Wrighton, C. J., Soares, M., grey, S. T, and Bach, F. H., A20 inhibits NF-${\kappa}B$ activation in endothelial cells without sensitizing to tumor necrosis factor-mediated apoptosis. Blood, 91, 2249-2258 (1998)
  13. Ghosh, S. and Karin, M., Missing pieces in the NF-${\kappa}B$ puzzle. Cell, 109, Suppl., S81-S96 (2002) https://doi.org/10.1016/S0092-8674(02)00703-1
  14. Hou, S., Guan, A, and Ricciardi, R. P., Phosphorylation of serine 337 of NF-${\kappa}B$ p50 is critical for DNA binding. J. Biol. Chem., 278, 45994-45998 (2003) https://doi.org/10.1074/jbc.M307971200
  15. Israel, A., The IKK complex: an integrator of all signals that activate NF-${\kappa}B$. Trends Cell Biol., 10, 129-133 (2000) https://doi.org/10.1016/S0962-8924(00)01729-3
  16. Joo, S. S., Won, T. J., Kang, H. C., and Lee, D. I., Ursodeoxycholic acid inhibits pro-inflammatory repertoires, IL-$1{\beta}$ and nitric oxide in rat microglia. Arch. Pharm. Res., 26, 1067-1073 (2003) https://doi.org/10.1007/BF02994760
  17. Kaltschmidt, B., Uherek, M., Volk, B., Baeuerle, P. A., and Kaltschmidt, C., Transcription factor NF-${\kappa}B$ is activated in primary neurons by amyloid beta peptides and in neurons surrounding early plaques from patients with Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A., 94, 2643-2647 (1997)
  18. Kaltschmidt, C., Kaltschmidt, B., Lannes-Vieira, J., Kreutzberg, G. W., Wekerle, H., Baeuerle, P. A., and Gehrmann, J., Transcription factor NF-${\kappa}B$ is activated in microglia during experimental autoimmune encephalomyelitis. J. Neuroimmunol., 55, 99-106 (1994) https://doi.org/10.1016/0165-5728(94)90151-1
  19. Lee, E. G., Boone, D. L., Chai, S., Libby, S. L., Chien, M., Lodolee, J. P., and Ma, A., Failure to regulate TNF-induced NF-${\kappa}B$ and cell death responses in A20-deficient mice. Science, 289, 2350-2354 (2000) https://doi.org/10.1126/science.289.5488.2350
  20. Moynagh, P. N., Williams, D. C., and ONeill, L. A., Interleukin-1 activates transcription factor NF-${\kappa}B$ in glial cells. Biochem. J, 294,343-347 (1993) https://doi.org/10.1042/bj2940343
  21. Norris, J. G., Tang, L., Sparacio, S. M., and Benveniste, E. N., Signal transduction pathways mediating astrocyte IL-6 induction by IL-1b and tumor necrosis factor-${\alpha}$. J. Immunol., 152, 841-850 (1994)
  22. Pahl, H. L., Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18, 6853-6866 (1999) https://doi.org/10.1038/sj.onc.1203239
  23. Rodrigues, C. M. P., Ma, X., Linehan-Stieers, C., Fan, G., Kren, B. T., and Steer, C. J., Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ., 6, 842-854 (1999) https://doi.org/10.1038/sj.cdd.4400560
  24. Nebbia, C., Biotransformation enzymes as determinants of xenobiotic toxicity in domestic animals. Veterinary J., 161, 238-252 (2001) https://doi.org/10.1053/tvjl.2000.0561
  25. de Oliveira, A. C. A. X., Fidalgo-Neto, A. A., and Paumgartten, E J. R., In vitro inhibition of liver monooxygenases by $\beta$-ionone, 1,8-cineole, (-)-menthol and terpineol. Toxicology, 135, 33-41 (1999) https://doi.org/10.1016/S0300-483X(99)00043-8
  26. de Oliveira, A. C. A. X., Ribeiro-Pinto, L. E, and Paumgartten, E. J. R., In vitro inhibition of CYP2B1 monooxyganases by $\beta$-myrcene and other monoterpenoid compounds. Toxicology, 92, 39-46 (1997a) https://doi.org/10.1016/0300-483X(94)90166-X
  27. de Oliveira, A. C. A. X., Ribeiro-Pinto, L. E, Otto, S. S., Gonvalves, A, and Paumgartten, E J. R., Induction of liver monooxygenases by $\beta$-myrcene. Toxicology, 124, 135-140 (1997b) https://doi.org/10.1016/S0300-483X(97)00144-3
  28. Sabbele, N. R., van Oudenaren, A., Hooijkaas, H., and Benner, R., The effect of corticosteroids upon murine B cells in vivo and in vitro as determined in the LPS-eulture system. J. Immunol., 62, 285-290 (1987)
  29. Surh, Y. J., Lee, K. K, Park, S. T., Mayne, A., Liem, J., and Miller, A., Chemoprotective effects of capsaicin and diallyl sulfide against mutagenesis or tumorigenesis by vinyl carbamate and N-nitrosodimethylamine. Carcinogenesis 16, 2467-2471 (1995) https://doi.org/10.1093/carcin/16.10.2467
  30. Wang, T., Apte, U., and Mehendale, H. M., Cytochrome P4502E1 induction increases thioacetamide liver injury in diet-restricted rats. Drug Metab. Dispos., 29, 1088-1095 (2001)
  31. Wang, T., Shankar, K., Ronis, M. J., and Mehendale, H. M., Potentiation of thioacetamide liver injury in diabetic rats is due to induced CYP2E1. J. Pharmacol. Exp. Ther., 294, 473-479 (2000)
  32. White, K. L., Jr., Lysy, H. H., and Holsapple, M. P., Immunosuppression by polycyclic aromatic hydrocarbons: a structureactivity relationship in B6C3F1 and DBA/2 mice. Immuno-pharmacology, 9, 155-164 (1985) https://doi.org/10.1016/0162-3109(85)90011-6