Alaternin and Emodin with Hydroxyl Radical inhibitory and/or Scavenging Activities and Hepatoprotective Activity on Tacrine-Induced Cytotoxicity in HepG2 Cells

  • Jung, Hyun-Ah (Research Institute of Marine Science and Technology, Korea Maritime University) ;
  • Chung, Hae-Young (College of Pharmacy, Pusan National University) ;
  • Takaka, Yokezawa (Institute of Natural Medicine, Toyama Medical and Pharmaceutical University) ;
  • Kim, Youn-Chul (College of Pharmacy, Wonkwang University) ;
  • Hyun, Sook-Kyung (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Choi, Jae-Sue (Faculty of Food Science and Biotechnology, Pukyong National University)
  • Published : 2004.09.01

Abstract

The antioxidative and hepatoprotective potentials of two anthraquinones, alaternin (2-hydroxy-emodin) and emodin, to scavenge and/or inhibit hydroxyl radicals generated by the Fenton reaction and to protect tacrine-induced cytotoxicity in human liver derived HepG2 cells were evaluated, respectively. The inhibitory activity on hydroxyl radical generated in a cell-free chemical system (FeSO$_4$/$H_2O$$_2$) was investigated by a fluorescence spectrophotometer using a highly fluorescent probe, 2$^1$,7$^1$-dichlorofluorescein. The hydroxyl radical scavenging activity was determined by electron spin resonance spectroscopy using 5,5-dimethy-1-pyrroline-N-oxide as hydroxyl radicals trapping agents. Tacrine-induced HepG2 cell toxicity was determined by a 3-[4,5-dimethylthiazole-2yl]-2,5-diphenyltertrazolium bromide assay. Although the scavenging activity of alaternin on hydroxyl radical was similar to that of emodin in dose-dependent pat-terns, the inhibitory activity exhibited by the former on hydroxyl radical generation was stron-ger than that of the latter, with $IC_{50}$/ values of 3.05$\pm$0.26 $\mu$M and 13.29$\pm$3.20 $\mu$M, respectively. In addition, the two anthraquinones, alaternin and emodin showed their hepatoprotective activ-ities on tacrine-induced cytotoxicity, and the EC$_{50}$ values were 4.02 11M and 2.37 $\mu$M, respec-tively. Silymarin, an antihepatotoxic agent used as a positive control exhibited the EC$_{50}$ value of 2.00 $\mu$M. These results demonstrated that both alaternin and emodin had the simultaneous antioxidant and hepatoprotective activities.ies.

Keywords

References

  1. Asha, V. V., Akhila, S., Wills, P. J. and Subramoniam, A., Futher studies on the antihepatotoxic activity of Phyllanthus maderaspatensis Linn. J. Ethnopahrmacol., 92, 67-70 (2004) https://doi.org/10.1016/j.jep.2004.02.005
  2. Benoit, G. G., Naud, C. F., Simard, M. A., and Astier, A. L., Noninterference of cytochrome P4501A2 in the cytotoxicity of tacrine using genetically engineered V79 Chinese hamster cells for stable expression of the human or rat isofrom an two human hepatocyte cell lines. Chem. Pharmacol., 53, 423-427 (1997) https://doi.org/10.1016/S0006-2952(96)00713-7
  3. Bruck, R. B., Aeed, H., Shirin, H., Matas, Z., Zaidel, L., Avni, Y. and Halpern, Z., The hydroxyl radical scavengers dimethylsulfoxide and dimethylthiourea protect rats against thioacetamide- induced fulminant hepatic failure. J. Hepatol., 31, 27-38 (1999) https://doi.org/10.1016/S0168-8278(99)80160-3
  4. Chen, C. W., He, B., and Chen, Q., Biochemical study of Chinese rhubarb anthraquinone derivatives on the inhibition of NADH oxidase and succinate oxidase of the mitochondrion. Shenwu Hauxue Zazhi, 4, 36-41 (1988)
  5. Cho, H., Jun, J. Y., Song, E. K., Kang, K. H., Baek, H. Y., Ko, Y. S., and Kim, Y. C., Bakuchiol: a hepatoprotective compounds of Psoralea corylifolia on tacrine-induced cytotoxicity in Hep G2 cells. Planta Med., 67, 750-751, (2001) https://doi.org/10.1055/s-2001-18347
  6. Choi, J. S., Chung, H. Y., Jung, H. A., Park, H. J., and Yokozawa, T., Comparative evaluation of antioxidant potential of alaternin (=2-hydroxyemodin) and emodin. J. Agric. Food Chem., 48, 6347-6351 (2000) https://doi.org/10.1021/jf000936r
  7. Choi, J. S., Lee, H. J., and Kang, S. S., Alaternin, cassiaside and rubrofusarin gentiobioside, radical scavenging principles from the seeds of Cassia tora on 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical. Arch. Pharm. Res., 17, 462-466 (1994) https://doi.org/10.1007/BF02979126
  8. Choi, J. S., Lee, H. J., Park, H. J., Kim, H. G., Young, H. S., and Mun, S. I., Screening for antioxidant activity of plan and marine algae and its active principles from Prunus davidiana. Kor. J. Phamacogn., 24, 299-303 (1993).
  9. Demierezer, L. O., Kuruuzum-Uz, A., Bergere, I., Schiewe, H. J., and Zeeck, A., The structures of antioxidant and cytotoxic agents from natural sources: anthraquinones and tannins from roots of Rumex patientia. Phytochemistry, 58, 1213-1217 (2001). https://doi.org/10.1016/S0031-9422(01)00337-5
  10. Doucet-Personeni, C., Bentley, P. D., Fletcher, R. J., Kinkaid, A., Kryger, G., Pirard, B., Taylor, A., Taylor, R., Viner, R., Silman, I., Sussman, J. L., Greenblatt, H. M., and Lewis, T., A Structure-based design approach to the development of novel, reversible AchE inhibitors. J. Med. Chem., 44. 3202-3215 (2001).
  11. Galm, O., Fabry, U., Efferth, T., and Osieka, R., Synergism between rViscumin and cisplatin is not dependent on ERCC-1 expression. Cancer Lett., 187, 143-151 (2002)
  12. Halliwell, B. and Gutteridge, J. M. C., Biologically relevant metal ion-dependent hydroxyl radical generation. An update. FEBS Lett., 307, 108-112 (1992). https://doi.org/10.1016/0014-5793(92)80911-Y
  13. Halliwell, B. and Gutteridge, J. M. C., Oxygen free radical andiron in relation to biology and medicine; some problems and concepts. Arch. Biochem. Biophys., 246, 501-514 (1986) https://doi.org/10.1016/0003-9861(86)90305-X
  14. Hipeli, S. and Elstner, E. F., OH-radical type reactive oxygen species: a short review on the mechanisms of OH-radical and peroxynitrite toxicity. Z. Naturforsch., 52C, 555-563 (1997)
  15. Hsiao, G. H., Shen, M. Y., Lin, K. H., Lan, M. H., Wu, L. Y., Chu, D. S., Lin, C. H., Su, C. H., and Sheu, J. R., Antioxidative and hepatoprotective effects of Antrodia camphorata extract. J. Agric. Food Chem., 51, 3302-3308 (2003) https://doi.org/10.1021/jf021159t
  16. Huang, S. S., Yeh, S. F. and Hong, C. Y., Effect of anthraquinone derivative on lipid peroxidation in rat heart mitochondria:structure-activity relationship. J. Nat. Prod., 58, 1365-1371 (1995) https://doi.org/10.1021/np50123a005
  17. Komarov, A. M., Hall, J. M., and Weglicki, W. B., Azidothymidine promotes free radical generation by activated macrophage and hydrogen peroxide-iron-mediated oxidation in a cell-free system. Biochim. Biophysic. Acta., 1688, 257-264 (2004) https://doi.org/10.1016/j.bbadis.2003.12.012
  18. Lebel, C. P. and Bondy, S. C., Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem. lnt., 17, 435-441 (1990) https://doi.org/10.1016/0197-0186(90)90025-O
  19. Li, L., Abe, Y., Kanagawa, K., Ushi, N., Imai, K., Mashino, T., Moshizuki, M., and Miyata, N., Distinguishing the 5,5-dimethyl- 1-pyrroline N-oxide (DMPO)-OH radical quenching effect from the hydroxyl radical scavenging effect in the ESR spin-trapping method. Anal. Chim. Acta, 512, 121-124 (2004) https://doi.org/10.1016/j.aca.2004.02.020
  20. Lin, C. C., Chang, C. H., Yang, J. J., Namba, T., and Hattori, M., Hepatoprotective effects of emodin from Bentilago leioccrpa. J. Ethnopharmcol., 52, 107-111 (1996). https://doi.org/10.1016/0378-8741(96)01397-9
  21. Lloyd, R. V., Hanna, P. M., and Mason, R. P., The origin of the hydroxyl radical oxygen in the fenton reaction. Free Radic. Biol. Med., 22, 885-888 (1997) https://doi.org/10.1016/S0891-5849(96)00432-7
  22. Moraes, J. E., Quina, F. H., Naxcimento, C. A. O., Silva, D. N. and Chiavone-Filho, O., Treatment of saline wastewater contaminated with hydrocarbons by the photo-fenton process. Environ. Sci. Technol., 38, 1183-1187 (2004). https://doi.org/10.1021/es034217f
  23. Morita, T., Jinno, K., Kawagishi, H., Arimoto, Y., Suganuma, H., Inakuma, T., and Sugiyama, K., Hepatoprotective effect of myristin from nutmeg (Myristica fragrans) on lipopolysaccharide/D-galactosamine-induced liver injury. J. Agric. Food Chem., 51, 1560-1565 (2003) https://doi.org/10.1021/jf020946n
  24. Mothilal, K. K., Inbaraj, J. J., Gandhidasan, R., and Murugesan, R., Photosensitization with anthraquinone: optical and EPR spin trapping studies of photogeneration of reactive oxygen species. J. Photochem. Photobiol. A: Chem., 162, 9-16 (2004) https://doi.org/10.1016/S1010-6030(03)00290-9
  25. Nagashima, H., Nakamura, K., and Goto, T., Hepatotoxin rubratoxin B induced the secretion of TNF-, IL-8 and MCP-1 in HL60 cells. Biochem. Biophy. Res. Comm., 287, 829-832 (2001) https://doi.org/10.1006/bbrc.2001.5657
  26. Ng, T. B., Liu, F., Lu, Y., Cheng, C. H. K., and Wang, Z., Antioxidant activity of compounds from the medicinal herb Aster tataricus. Comparative Biochem. Physiol. Part C, 136, 109-115 (2003). https://doi.org/10.1016/S1532-0456(03)00170-4
  27. Noro, T., Noro, K., Milyase, T., Kuroyanagi, M., Umehara, K., Ueno, A., and Fukushima, S., Inhibition of xanthine oxidase by anthraquinone. Chem. Pharm. Bull., 35, 4314-4316 (1987) https://doi.org/10.1248/cpb.35.4314
  28. Oh, H. C., Kim, J. S., Song, E. K., Cho, H., Kim, D. H., Park, S. E., Lee, H. S., and Kim, Y. C., Sesquiterpenes with hepatoprotective activity from Cnidium monnieri on tacrine-induced cytotoxicity in Hep G2 cells. Planta Med., 68, 748-749 (2002a). https://doi.org/10.1055/s-2002-33796
  29. Oh, H. C., Lee, H. S., Kim, T. W., Chai, K. Y., Chung, H. T., Kwon, T. O., Jun, J. Y., Jeong, O. S., Kim, Y. C., and Yun, Y. G., Fucocoumarines from Angelica dahurica with hepatoprotective activity on tacrine-induced cytotoxicity in Hep G2 cells. Planta Med., 68, 463-464 (2002b) https://doi.org/10.1055/s-2002-32075
  30. Osseni, R. A., Debbasch, C., Christen, M. O., Rat, P., and Warnet, J. M., Tacrine-induced reactive oxygen species in a human liver cell line: the role of anethole dithilethione as a scavenger. Toxicol. In Vitro, 13, 683-688 (1999) https://doi.org/10.1016/S0887-2333(99)00050-8
  31. Oturan, M. A., Peiroten, J., Chartrin, P., and Acher, A. J., Complete destruction of p-nitrophenol in aqueous medium by electro-fenton reaction. Environ. Sci. Technol., 34, 3474-3476 (2000) https://doi.org/10.1021/es990901b
  32. Pan, S. Y., Han, Y. F., Carlier, P. R., Pang, Y. P., Mak, D. H. F., Lam, B. Y. H., and Ko, K. M., Schisandrin B protects against tacrine- and bis(7)-tacrine-induced hepatotoxicity and enhances cognitive function in mice. Planta Med., 68, 217-220 (2002) https://doi.org/10.1055/s-2002-23145
  33. Rimbach, G., Weinberg, P. D., de Pascual-Teresa, S., Alonso, M. G., Ewins, B. A., Turner, R., Minihane, A. M.,Botting, N., Firley, B., Matsugo, S., Uchida, Y., and Cassidy, A., Sulfation of genistein alters its antioxidant properties and its effect on platelet aggregation and monocyte and endothelial function. Biochim. Biophys. Acta, 1670, 229-237 (2004) https://doi.org/10.1016/j.bbagen.2003.12.008
  34. Rota, C., Chignell, C. F., and Mason, R. P., Evidence for free radical formation during the oxidation of 2',7'-dichlorofluorescin to the fluorescent dye 2',7'-dichlorofluorescein by horseradish peroxidase: possible implications for oxidative stress measurements. Free Radic. Biol. Med., 27, 873-881 (1999) https://doi.org/10.1016/S0891-5849(99)00137-9
  35. Shao, Z. H., Xie, J. T., Vanden Hoek, T. L., Mehendale, S., Aung, H., Li, C. Q., Qin, Y., Schumacker, P. T., Becker, L. B., and Yuan, C. S., Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochim. Biophysic. Acta, 1670, 165-171 (2004) https://doi.org/10.1016/j.bbagen.2003.12.001
  36. Song, E. K., Cho, H., Kim, J. S., Kim, N, Y., An N. H., Kim, J. A., Lee, S. H., and Kim, Y. C., Diarylhepatonoids with free radical scavenging and hepatoprotective activity in vitro from Curcuma longa. Planta Med., 67, 876-877 (2001) https://doi.org/10.1055/s-2001-18860
  37. Song, E. K., Kim, J. H., Kim, J. S., Cho, H., Nan, J. X., Sohn, D. H., Ko, G. I., Oh, H. C., and Kim, Y. C., Hepatoprotective phenolic constituents of Rhodiala sachalinensis on tacrine-induced cytotoxicity in HepG2 cells. Phytother. Res., 17, 563-565 (2003) https://doi.org/10.1002/ptr.1166
  38. Song, T. Y. and Yen, G. C., Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against ${CCI}_4$-induced hepatic toxicity in rats. J. Agric. Food Chem., 51, 1571-1577 (2003) https://doi.org/10.1021/jf0209701
  39. Stohs, S. J. and Bagchi, D., Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med., 18, 321-336 (1995) https://doi.org/10.1016/0891-5849(94)00159-H
  40. Ueda, J. I., Saito, N., Shimazu, Y., and Ozawa, T., A comparison of scavenging abilities of antioxidants against hydroxyl radicals. Arch. Biochem. Biophys., 333, 377-384 (1996) https://doi.org/10.1006/abbi.1996.0404
  41. Wang, B. J., Liu, C. T., Tseng, C. Y., Wu, C. P., and Yu, Z. R., Hepatoprotective and antioxidant effects of Bupleurum kaoi Liu (Chao et chuang) extract and its fractions fractionated using supercritical ${CO}_2$ on ${CCI}_4$-induced liver damage. Food. Chem. Toxicol., 42, 609-617 (2004) https://doi.org/10.1016/j.fct.2003.11.011
  42. Watkins, P. B., Zimmerman H. J., Knapp, M. J., Gracon, S. I., and Lewis, K. W., Hepatotoxic effects of tacrine administration in patients with Alzheimers disease. J. Am. Med. Assoc., 271, 992-998 (1994) https://doi.org/10.1001/jama.271.13.992
  43. Wu, C. H., Hsieh, C. L., Song, T. Y., and Yen, G. C., Inhibitory effects of Cassia tora L. on benzo[a]pyrene-mediated DNA damage toward HepG2 cells. J. Agric. Food Chem., 49, 2579-2586 (2001). https://doi.org/10.1021/jf001341z
  44. Yang, C. F., Shen, H. M., and Ong, C. N., Protective effect of ebselen against hydrogen peroxide-induced cytotoxicity and DNA damage in HepG2 cells. Biochem. Pharmacol., 57, 273-279 (1999) https://doi.org/10.1016/S0006-2952(98)00299-8
  45. Yen, G. C., Chen, H. W., and Duh, P. D., Extraction and identification of an antioxidative compound from jue ming zi (Cassia tora L.). J. Agric. Food Chem., 46, 820-824 (1998) https://doi.org/10.1021/jf970690z
  46. Yen, G. C., Chen, H. Y., and Peng, H. H., Antioxidant and prooxidant effects of various tea extracts. J. Agric. Food Chem., 45, 30-34 (1997) https://doi.org/10.1021/jf9603994
  47. Yen, G. C., Duh, P. D., and Chuang, A. Y., Antioxidant activity of anthraquinones and anthrone. Food Chem., 70, 437-441 (2000) https://doi.org/10.1016/S0308-8146(00)00108-4
  48. Yoshimura, Y., Inomata, T., Nakazawa, H., Kubo, H., Yamaguchi, F., and Ariga, T., Evaluation of free radical scavenging activities of antioxidants with an $H_2O_2$/NaOH/DMSO system by electron spin resonance. J. Agric. Food Chem., 47, 4653-4656 (1999) https://doi.org/10.1021/jf990422w