초록
영상 보간은 기존에 존재하는 화소의 정보로 빈 화소를 계산하여 영상을 확대하는 방법이다. 자연 영상은 다양한 공간 주파수 성분을 포함하기 때문에 하나의 영상 보간 방법으로 다양한 주파수 성분에 대한 보간을 모두 수행하기에는 어려운 점이있다. 본 논문에서는 공간 주파수 특성을 가지는 다중 신경회로망 구조를 이용하여 영상을 보간하는 방법은 제안한다. 입력 영상은 국부 분산에 의해 공간 주파수에 따라 분리되어 공간 주파수 대역 별로 설정된 신경회로망을 통하여 보간 된다. 제안 방법은 deinterlacing에서의 적용성 때문에 관심이 커지고 있는 2배의 영상 보간에 적용되었다. 모의 실험에서 제안 방법은 기존의 알고리즘들뿐 아니라 단일 신경 회로망을 사용하는 방법보다 개선된 PSNR 성능을 보여주었다.
Image interpolation is an image enlargement method that calculates an empty pixel value using the information of given pixel values. Since a natural image is composed of various spatial frequency components, it is difficult for one method to interpolate pixels with various spatial frequencies. In this paper, we propose an image interpolation method using multiple neural networks with spatial frequency characteristic. Input image is segmented according to spatial frequency by local variance, and each segmented image is interpolated using neural network established for spatial frequency band. The proposed method is applied to line doubling that becomes an important part in image interpolation because of deinterlacing. In simulation the proposed algorithm shows the improved PSNR result compared with conventional algorithms and method using single neural network.