A LQ-Pl Controller Tuning for TITO System

TITO시스템의 LQ-Pl제어기 동조

  • 엄태호 (대우종합기계)주) 방산연구소) ;
  • 서병설 (한양대학교 전자전기컴퓨터공학부)
  • Published : 2004.09.01

Abstract

This paper presents an optimal and robust tuning method of decentralized PI controller for the TITO second order systems to be formulated as LQR. The procedure is developed by establishing relationships between the closed-loop state equation including the decentralized PI tuning parameter and the . closed-loop state equation of LQR and by selecting the weighting factors Q and R of the cost function in order to satisfy the design specifications In frequency domain which the stability robustness and satisfied the performance guaranteed.

다변수 제어시스템의 최적 PI동조에 관한 연구는 난해하기 때문에 일반적인 방법으로 접근하기 힘들다. 본 논문에서는 다변수 시스템을 2-입력, 2-출력의 2차시스템을 고려하여 PI제어요소가 포함된 폐루프 상태방정식과 LQR의 폐루프 상태방정식의 관계를 유도하는 루프형성절차를 통해 주파수 영역 설계사양과 만족할 수 있도록 가격함수의 가중치 요소 Q와 R을 선정함으로써 성능 및 안정도-강인성이 보장되는 분산된 최적 강인 PI제어기 설계방법을 제안하고자 한다.

Keywords

References

  1. M. Zhuang and D. Atherton, 'PID controller design for a TITO system,' IEE Proc. Cant. Theory Appl., Vol. 141, NO.2, pp. 111-120, 1994 https://doi.org/10.1049/ip-cta:19949977
  2. C. Vlachos, D.Williams, and J. B. Gomm,'Genetic approach to decentralised PI controller tuning for multivariable processes,' IEE. Proc. Cont. Theory Appl. Vol. 146, No.1, pp. 58-64, 1999 https://doi.org/10.1049/ip-cta:19990373
  3. S. Skogestad and M. Morari,'Robust performance of decentralized control systems by independent designs,' Automatica, Vol. 25, No.1, pp. 119 -125, 1989 https://doi.org/10.1016/0005-1098(89)90127-1
  4. M. Chiu and Y. Arkun,'A methodology for sequential design of robust decentralized control systems', Automatica, Vol. 28, No. 5, pp. 997-1001, 1992 https://doi.org/10.1016/0005-1098(92)90153-7
  5. H. Ito, H. Ohmori and A. Sano,'Robust perfomance of decentralized control systems by expanding sequential designs', Int. J. Control, Vol. 61, No. 6, pp. 1297-1311, 1995 https://doi.org/10.1080/00207179508921957
  6. M. Hovd and S. Skogestad,'Sequential design of decentralized controllers', Automatica, Vol. 30, pp. 1601-1607, 1994 https://doi.org/10.1016/0005-1098(94)90099-X
  7. E. Gagnon, A. Pomerleau, and A. Desbiens,'Mu-Synthesis of robust decentralised PI controllers,' IEE. Proc. Cont. Theory Appl. Vol. 146, No.4, pp, 289-294, 1999 https://doi.org/10.1049/ip-cta:19990324
  8. 이동영, 윤성오, 임동균, 서병설, 'LQ-Servo를 이용한 강인한 PI제어기 설계,' Proceedings of the 11th KACC, pp. 577-580, 1996
  9. M. Athans, 'Lecture Note on Multivariable Control System,' M.I.T. Ref. No.860224/6234. 1986
  10. C. Lin and A. Gundes, 'Multi-input Multi-output PI Controller Design,' Proceedings of the 39th IEEE Conference on Decision & Control, pp. 3702-3707, 2000
  11. M. Morari and E. Zafiriou, Robust Process Control, Prentice-Hall, 1989
  12. T. Kiong, W. Guo and H. Chieh, Advances in PID Control, Springer, 1999
  13. H. Kwakernaak and R. Sivan,'The Maximally Achivable Accuracy of Linear Optimal Regulators and Linear Optimal filters', IEEE Trans on Automat, Contr, Vol, AC-17, pp. 79-86, 1972, 4, pp.689-702, 1987
  14. J.M. Maciejowski, Multivariable Feedback Design, Addison-Wesley, 1989
  15. G. Strang, Linear Algebra and Its Applications, 3rd ed., Harcourt Brace Jovanovich, Inc., 1988
  16. 서병설, '다변수 제어 시스템의 동조에 대한 연구', 대한 의용 생체 공학 논문집, 제 8권 2호, pp. 245-254, 1987