DOI QR코드

DOI QR Code

Nano-Soot Particle Formation in Ethene/Air Inverse Diffusion Flame

에틸렌/공기 역 확산화염에서의 나노 매연 입자 생성

  • 이의주 (건설기술연구원 화재 및 설비 연구부) ;
  • 신현준 (한국과학기술원 화재 및 설비 연구부) ;
  • 오광철 (한국과학기술원 기계공학과) ;
  • 신현동 (한국과학기술원 기계공학과)
  • Published : 2004.09.01

Abstract

Experimental measurements of flame structure and soot characteristics were performed fur ethene inverse diffusion flames (IDF). IDF has been considered as the excellent flow field to study the incipient soot because soot particle do not experience the oxidation process. In this study, LIF image clarified the reaction zone of IDF with OH signal and PAH distribution. laser light scattering technique also identified the being of soot particle. To address the degree of soot maturing, C/H ratio and morphology of soot sample were investigated. From these measurements, the effect of flow residence time and temperature on soot inception could be suggested, and more details on soot characteristic in the IDF was determined according to fuel dilution and flame condition. The fuel dilution results in a decrease of temperature and enhancement of residence time, but the critical dilution mole fraction is existed for temperature not to effect on soot growth. Also, the soot inception evolved on the specific temperature and its morphology are independent of the fuel dilution ratio of fuel.

Keywords

References

  1. Glassman, I., 1988, 'Soot Formation in Combustion Process,' Proc. Comb. Inst., Vol. 22, pp. 295-311
  2. Kennedy, I. M., 1997, 'Models of Soot Formation and Oxidization,' Prog. Energy Combust. Sci., Vol. 23, pp. 95-132 https://doi.org/10.1016/S0360-1285(97)00007-5
  3. Richter, H. and Howard, J. B., 2000, 'Formation of Polycyclic Aromatic Hydrocarbons and Their Growth to Soot-A Review of Chemical Reaction Pathways,' Proc. Comb. Inst., Vol. 26, pp. 565-608 https://doi.org/10.1016/S0360-1285(00)00009-5
  4. Santoro, R. J., Yeh, T. T., Horvath, J. J. and Semerjian, H. G., 1987, 'The Transport and Growth of Soot Particles in Laminar Diffusion Flames,' Combust. Sci. and Tech., Vol. 53, pp. 89-115 https://doi.org/10.1080/00102208708947022
  5. Dobbins, R. A., Fletcher, R. A. and Lu, W., 1995, 'Laser Microprobe Analysis of Soot Precursor Particles and Carbonaceous Soot,' Combust. Flame, Vol. 100, pp. 301-309 https://doi.org/10.1016/0010-2180(94)00047-V
  6. Bockhorn, H., 1994, Soot formation in Combustino, Mechanism and Models, Spring Verlag, Berlin
  7. Dobbines, R. A., Fletcher, R. A. and Chang, H. C., 1998, 'The Evolution of Soot Precursor Particles in a Diffusion Flame,' Combust. Flame, Vol. 115, pp. 285-298 https://doi.org/10.1016/S0010-2180(98)00010-8
  8. Dobbins, R. A., 2002, 'Soot Inception Temperature and the Carbonization Rate of Precursor Particles,' Combust. Flame, Vol. 130, pp. 204-214 https://doi.org/10.1016/S0010-2180(02)00374-7
  9. Leonard, S., Mulholland, G. W., Puri, R. and Santoro, R. J., 1994, 'Generation of CO and Smoke During Underventilated Combustion,' Combust. Flame, Vol. 98. pp. 20-34 https://doi.org/10.1016/0010-2180(94)90195-3
  10. Blevins, L. G., Fletcher, R. A., Benner, B. A., Steel E. B. and Mulholland, G. W., 2002, 'The Existence of Young Soot in the Exhaust of Inverse Diffusion Flames,' Proc. Comb. Inst., Vol. 29, pp. 2325-2333 https://doi.org/10.1016/S1540-7489(02)80283-8
  11. Wu, K. T. and Essenhigh, R. H., 1984, 'Mapping and Structure of Inverse Diffusion Flames of Methane,' Proc. Comb. Inst., Vol. 20, pp. 1925-1932
  12. Sidebotham, G. W. and Glassman, I., 1992, 'Flame Temperature, Fuel Structure, and Fuel Concentration Effects on Soot Foemationin Inverse Diffusion Flames,' Combust. Flame, Vol. 90, pp. 269-283 https://doi.org/10.1016/0010-2180(92)90088-7
  13. Kang, K. T., Hwang, J. Y. and Chung, S. H., 1997, 'Soot Zone Structure and Sooting Limit in Diffusion Flames: Comparison of Counterflow and Co-Flow Flames,' Combust. Flame, Vol. 109, pp. 266-281 https://doi.org/10.1016/S0010-2180(96)00163-0
  14. Kaplan, C. R. and Kailasanath, K., 2001, 'Flow-Field Effects on Soot Formation in Normal and Inverse Methane-Air Diffusion Flames,' Combust. Flame, Vol. 124, pp. 275-294 https://doi.org/10.1016/S0010-2180(00)00196-6
  15. Hart, S. J., Hall, G. J. and Kenny, J. E., 2002, 'A Laser-Induced Fluorescence Dual-Fiber Optic Array Detector Applied to the Rapid HPLC Separation of Polycyclic Aromatic Hydrocarbon,' Anal. Bioanal Chem., Vol. 372, pp. 205-215 https://doi.org/10.1007/s00216-001-1125-6
  16. Kazuhiro, H., Kenji, A., Taku, M., Keiji, S. and Masataka, A., 2002, 'PAH Measurement in a Propane Diffusion Flame by Using a LIF,' Proc. Japanese Combustion Symposium, Vol. 40, pp. 393-394
  17. Zelepouga, S. A., Saveliev, A. V., Kennedy, L. A. and Fridman, A. A., 2000, 'Relative Effect of Acetylene and P AHs Addition on Soot Formation in Laminar Diffusion Fiames of Methane with Oxygen and Oxygen-Enriched Air,' Combust. Flame, Vol. 122, pp. 76-89 https://doi.org/10.1016/S0010-2180(00)00104-8
  18. Burke, S. P. and Shumann, T. E. W., 1928, Ind. Eng. Chem., Vol. 20, pp. 998-1004 https://doi.org/10.1021/ie50226a005
  19. Blevins, L. G. and Lee, E. J., 2003, 'Soot Inception in a Well-Stirred Reactor,' The Third U.S. Joint Meeting on Combustion, Chicago, U.S
  20. Ind. Eng. Chem. v.20 Burke, S. P.;Shumann, T. E. W.
  21. The Third U.S. Joint Meeting on Combustion Soot Inception in a Well-Stirred Reactor Blevins, L. G.;Lee, E. J.