DOI QR코드

DOI QR Code

A CLASS OF EXPONENTIAL CONGRUENCES IN SEVERAL VARIABLES

  • Published : 2004.07.01

Abstract

A problem raised by Selfridge and solved by Pomerance asks to find the pairs (a, b) of natural numbers for which $2^a\;-\;2^b$ divides $n^a\;-\;n^b$ for all integers n. Vajaitu and one of the authors have obtained a generalization which concerns elements ${\alpha}_1,\;{\cdots},\;{{\alpha}_{\kappa}}\;and\;{\beta}$ in the ring of integers A of a number field for which ${\Sigma{\kappa}{i=1}}{\alpha}_i{\beta}^{{\alpha}i}\;divides\;{\Sigma{\kappa}{i=1}}{\alpha}_i{z^{{\alpha}i}}\;for\;any\;z\;{\in}\;A$. Here we obtain a further generalization, proving the corresponding finiteness results in a multidimensional setting.

Keywords

References

  1. Unsolved problems in number theory R. Guy
  2. Amer. Math. Monthly v.84 Problem E2468 C. Pomerance;H. Ruderman(Proposed) https://doi.org/10.2307/2318318
  3. Proc. London Math. Soc. v.14 no.2 Highly composite numbers S. Ramanujan https://doi.org/10.1112/plms/s2_14.1.347
  4. Proc. Camb. Philos. Soc. v.58 On primitive prime factors of $a^n-b^n$ A. Schinzel
  5. Proc. Amer. Math. Soc. v.93 Pairs where $2^a-2^b$ divides $n^a-n^b$ for all n Q. Sun;M. Zhang https://doi.org/10.2307/2044748
  6. Amer. Math. Monthly v.83 Problem E2468 W. Y. Velez;H. Ruderman(Proposed) https://doi.org/10.2307/2318231
  7. Proc. Amer. Math. Soc. v.127 A finiteness theorem for a class of exponential congruences M. Vajaitu;A. Zaharescu https://doi.org/10.1090/S0002-9939-99-04822-4