참고문헌
- FEMS Microbiol. Rev. v.16 Technological and economic potential of poly (lactic acid) and lactic acid derivatives Datt, R.;S. P. Tsai;P. Bonsignor;S. Moon;J. Frank https://doi.org/10.1111/j.1574-6976.1995.tb00168.x
- Appl. Microbiol. v.52 Simultaneous enzymatic wheat starch saccharification and fermentation to lactic acid by Lactococcus lactis Hofvendahl, K.;C. Akerberg;G. Zacchi
- Egyptian J. Microbiol. v.36 Lactic acid production by interspecific hybrids of Rhizopus strains from potato processing peel waste Khalaf, S. A.
- J. Ferment. Bioeng. v.84 Enhanced production of L(+)-lactic acid from corn starch in a culture of Rhizopus oryzae using an air-lift bioreactor Yin, P.;N. Nishina;Y. Kosakai;K. Yahiro;Y. Park;M. Okabe https://doi.org/10.1016/S0922-338X(97)82063-6
- Appl. Microbiol. Biotechnol. v.49 Modelling the influence of pH, temperature, glucose and lactic acid concentrations on the kinetics of lactic acid production gy Lactococcus lactis ssp. lactis ATCC 19435 in whole-wheat flour Akerberg, C.;K. Hofvendahl;G. Zacchi;B. Hahn-Hagerdal https://doi.org/10.1007/s002530051232
- Adv. Biochem. Eng. Biotechnol. v.65 Production of multifunctional organic acids from renewable resources Tsao, G. T.;N. J. Cao;J. Du;C. S. Gong
- J. Agri. Eng. Res. v.71 Biotechnological conversion of sugar and starchy crops into lactic acid Richter, K.;C. Berthold https://doi.org/10.1006/jaer.1998.0314
- Curr. Opin. Biotechnol. v.11 Metabolic engineering applications to renewable resource utilization Aristidous, A.;M. Penttila https://doi.org/10.1016/S0958-1669(00)00085-9
- J. Ind. Microbiol. v.7 Lactic acid production from enzymethinned corn starch using Lactobacillus amylovorus Cheng, P.;R. E. Mueller;S. Jaeger;R. Bajpai;E. L. lannotti https://doi.org/10.1007/BF01575599
- J. Ferment. Bioeng. v.81 Production of L(+) and D(-) lactic acid isomers by Lactobacillus casei subsp. casei DSM 20011 and Lactobacillus coryniformis subsp. torquens DSM 20004 in continuous fermentation Gonzalez-Vara, A.;D. Pinelli;M. Rossi;D. Fajner;F. Magelli;D. Matteuzzi https://doi.org/10.1016/0922-338X(96)81478-4
- World J. Microbiol. Biotechnol. v.18 Direct fermentation of various pure and crude starchy substrates to L(+) lactic acid using Lactobacillus amylophilus GV6 Vishnu, C.;G. Seenayya;G. Reddy https://doi.org/10.1023/A:1015526221744
- World J. Microbiol. Biotechnol. v.10 Production of L-lactic acid by Rhizopus species Soccol, C. R.;V. I. Stonoga;M. Raimbault https://doi.org/10.1007/BF00144467
- Acta Biotechnol. v.15 Physiological restriction of the L-lactic acid production by Rhizopus arrhizus Rosenberg, M.;L. Kristofikova https://doi.org/10.1002/abio.370150409
- Proceedings of the Bioconversion Symposium, Ⅲ A method for production of alcohol directly from cellulose using cellulase and yeast Takagi, M.;S. Abe;S. Suzuki;G. H. Emert;N. Yata
- Biotechnol. Lett. v.11 Kinetics of direct fermentation of agricultural commodities to L(+)-lactic acid by Rhizopus oryzae Yu, R. C.;Y. D. Hang https://doi.org/10.1007/BF01040043
- Appl. Biochem. Biotechnol. v.77-79 Optimization of L-Lactic acid production from glucose by Rhizopus oryzae ATCC 52311 Zhou, Y.;J. M. Dominguez;N. Cao;J. Du;G. T. Tsao
- Enzyme Microb. Technol. v.28 RT-PCR amplification of a Rhizopus oryzae lactate dehydrogenase gene fragment Hakki, E. E.;M. S. Akkaya https://doi.org/10.1016/S0141-0229(00)00319-7
- J. Chem. Technol. Biotechnol. v.76 Strategies to improve the bioconversion of processed wood into lactic acid by simultaneous saccharification and fermentation Moldes, A. B.;J. L. Alonso;J. C. Parajo https://doi.org/10.1002/jctb.381
- Proc. Biochem. v.34 Production of fungal protein and glucoamylase by Rhizopus oligosporus from starch processing wastewater Jin, B.;J. van Leeuwen;B. Patel;H. Doelle;Q. Yu https://doi.org/10.1016/S0032-9592(98)00069-7
- J. Chem. Technol. Biotechnol. v.76 A bioprocessing mode for fungal biomass protein production and wastewater treatment using external air-lift bioreactor Jin, B.;Q. Yu;J. van Leeuwen https://doi.org/10.1002/jctb.486
- Enzyme Microb. Technol. v.26 The influence of lactic acid formation on the simultaneous saccharification and fermentation of softwood to ethanol Stenberg, K.;M. Galbe;G. Zacchi https://doi.org/10.1016/S0141-0229(99)00127-1
- Colorimetric Chemical Analytical Methods(2th ed.) Tomas, L. C.;G. J. Chamberlain
- Anal. Chem. v.31 Use of dinitrosalicylic acid reagent for determination of reducing sugar Miller, G. L. https://doi.org/10.1021/ac60147a030
- Appl. Biochem. Biotechnol. v.70-72 An integrated bioconversion process for production of L-lactic acid from starchy potato feed stocks Tsai, S. P.;S. H. Moon https://doi.org/10.1007/BF02920157
- Curr. Microbiol. v.45 Lactic acid fermentation of potato pulp by the fungus Rhizopus oryzae Oda, Y.;K. Saito;H. Yamauchi;M. Mori https://doi.org/10.1007/s00284-001-0048-y
- Biotechnol. Lett. v.21 Product inhibition in simultaneous saccharification and fermentation of cellulose into lactic acid Iyer, P. V.;Y. Y. Lee https://doi.org/10.1023/A:1005435120978
- Enzyme Microb. Technol. v.26 Factors affecting the fermentative lactic acid production from renewable resources Hofvendahl, K.;B. Hahn-Hagerdal https://doi.org/10.1016/S0141-0229(99)00155-6
- Appl. Biochem. Biotechnol. v.51-52 Latic acid production by pellet-form Rhizopus oryzae in a submerged system Yang, C. W.;Z. J. Lu;G. T. Tsao https://doi.org/10.1007/BF02933411