Enhancement of Erythropoietin Production from Chinese Hamster Ovary(CHO) Cells by Introduction of the Urea Cycle Enzymes, Carbamoyl Phosphate Synthetase I and Ornithine Transcarbamylase

  • Published : 2004.08.01

Abstract

Efficient mammalian erythropoietin (EPO)-expression systems are required for therapeutic applications. The accumulation of ammonia is a major problem in the production of recombinant proteins in cultured animal cells. To counter this problem we introduced the first two genes of the urea cycle, carbamoyl phosphate synthetase (CPSI) and ornithine transcarbamylase (OTC), into IBE Chinese Hamster Ovary (CHO) cells by stable transfection. The resulting cell line, CO5, had a higher growth rate and accumulated less ammonia per cell than the parental cell line, IBE. In addition, it produced 2 times more EPO than the parent, and the purified EPO contained a higher proportion of acidic isoforms with approximately 15% more sialic acid.

Keywords

References

  1. Res. Immunol. v.145 Effect of ammonia on endocytosis, cytokine production and lysosomal enzyme activity of a microglial cell line Atanassov, C. L.;C. D. Muller;S. Sarhan;B. Knodgen;G. Rebel;N. Seiler https://doi.org/10.1016/S0923-2494(94)80016-2
  2. Biotechnol. Bioeng v.47 The effect of ammonia on the O-linked glycosylation of granulocyte colony-stimulating factor produced by Chinese hamster ovary cell Andersen, D.C.;C. F. Goochee https://doi.org/10.1002/bit.260470112
  3. Anal. Biochem. v.72 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding Bradford, M. M. https://doi.org/10.1016/0003-2697(76)90527-3
  4. J. Biotechnol. v.1 The effects of glutamine utilization and ammonia production on the growth of BHK cells in microcarrier culture Butler, M.;R. E. Spier https://doi.org/10.1016/0168-1656(84)90004-X
  5. J. Biotechnol. v.39 Methods for reducing the ammonia in hybridoma cell cultures Capiaumont, J.;C. Legrand;D. Carbonell;B. Dousset;F. Belleville;P. Nabet https://doi.org/10.1016/0168-1656(94)00142-Y
  6. Proceedings of the Eleventh ESACT Meeting Development of strategies of the removal of ammonia from animal cell cultures Carbonell, D.;B. Besnainou;J. Capiaumont;C. Legrand;P. Lessart;P. Nabet
  7. Semin. Hematol. v.38 Beyound erythropoiesis: Novel applications for recombinant human erythropoietin Cerami, A. https://doi.org/10.1016/S0037-1963(01)90128-3
  8. Biotechnol. Prog. v.16 Ammonia removal using hepatoma cells in mammalian cell cultures Choi, Y. S.;D. Y. Lee;I. Y. Kim;S. Kang;K. Ahn;H. J. Kim;Y. H. Jeong;G. T. Chun;J. K. Park;I. H. Kim https://doi.org/10.1021/bp000099d
  9. J. Microbiol. Biotechnol. v.11 Effect of sodium butyrate on glycosylation of recombinant erythropoietin Chung, B. S.;Y. T. Jeong;K. H. Chang;J. S. Kim;J. H. Kim
  10. J. Microbiol. Biotechnol. v.13 Reduction of ammonia accumulation and improvement of cell viability by expression of urea cycle enzymes in Chinese Hamster Ovary cells Chung, M. I.;M. H. Lim;Y. J. Lee;I. H. Kim;I. Y. Kim;J. H. Kim;K. H. Chang;H. J. Kim
  11. Enzyme Microb. Technol. v.27 Effects of ammonia and lactate on growth, metabolism, and productivity of BHK cells Cruz, H. J.;C. M. Freitas;P. M. Alves;J. L. Moreira;M. J. T. Carrondo https://doi.org/10.1016/S0141-0229(00)00151-4
  12. Blood Rev. v.7 Management of the hematologic manifestations of HIV disease Doweiko, J. P. https://doi.org/10.1016/S0268-960X(05)80022-0
  13. J. Chromatogr. A. v.79 Chromatographic separation of recombinant human erythropoietin isoforms Gokana, A.;J. J. Winchenne;A. Ben-Ghanem;A. Ahaded;J. P. Cartron;P. Lambin
  14. Biotechnology (NY) v.9 The oligosaccharides of glycoproteins: Bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties Goochee, C. F.;M. J. Gramer;D. C. Andersen;J. B. Bahr;J. R. Rasmussen https://doi.org/10.1038/nbt1291-1347
  15. Biotechnol. Bioeng. v.44 Transient responses of hybridoma cells in continuous culture to step changes in amino acids and vitamin concentrations Hiller, G. W.;D. S. Clark;H. W. Blanch https://doi.org/10.1002/bit.260440308
  16. Biotechnol. Prog. v.10 Influence of ammonium on growth, metabolism, and productivity of a continuous suspension Chinese hamster ovary cell culture Hansen, H. A.;C. Emborg https://doi.org/10.1021/bp00025a014
  17. J. Biotechnol. v.93 Expression of recombinant cytoplasmic yeast pyruvatecarboxylase for the improvement of the production of human erythropoietin by recombinant BHK-21 cells Irani, N.;A. J. Beccaria;R. Wagner https://doi.org/10.1016/S0168-1656(01)00409-6
  18. J. Chromatogr. B. Biomed. Sci. Appl. v.699 Separation methods for glycoprotein analysis and preparation Kishino, S.;K. Miyazaki https://doi.org/10.1016/S0378-4347(97)00155-2
  19. J. Biotechnol. v.52 Fully automated roller bottle handling system for large-scale culture of mammalian cells Kunitake, R.;A. Suzuki;H. Ichihashi;S. Matsuda;O. Hirai;K. Morimoto https://doi.org/10.1016/S0168-1656(96)01654-9
  20. J. Biotechnol. v.15 Growth behavior of Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium components and waste products Kurano, N.;C. Leist;F. Messi;S. Kurano;A. Fiechter https://doi.org/10.1016/0168-1656(90)90055-G
  21. Nature v.227 Cleavage of structural proteins during the assembly of the head of bacteriophage T4 Laemmli, U. K. https://doi.org/10.1038/227680a0
  22. J. Biotechnol. v.69 Development of a serum free medium for the production of erythropoietin by suspension culture of recombinant CHO cells using a statistical design Lee, G. M.;E. J. Kim;N. S. Kim;S. K. Yoon;Y. H. Ahn;J. Y. Song https://doi.org/10.1016/S0168-1656(99)00004-8
  23. Biotechnol. Bioeng. v.44 Catabolic control of hybridoma cells by glucose and glutamine limited fed batch cultures Ljunggren, J.;L. Haggstrom https://doi.org/10.1002/bit.260440706
  24. Stem Cells v.13 Pathogenesis of the anemia of chronic disease: A cytokine-mediated anemia Means, R. T. Jr https://doi.org/10.1002/stem.5530130105
  25. Biotechnol. Bioeng. v.39 Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production Ozturk, S. S.;M. R. Riley;B. O. Palsson https://doi.org/10.1002/bit.260390408
  26. J. Biotechnol. v.81 Expression of carbamoyl phosphate synthetase I and ornithine transcarbamoylase genes in Chinese hamster ovary dhfr-cells decreases accumulation of ammonium ion in culture media Park, H. S.;I. H. Kim;I. Y. Kim;K. H. Kim;H. J. Kim https://doi.org/10.1016/S0168-1656(00)00282-0
  27. Biotechnol. Appl. Biochem. v.32 Efficiency of promoter and cell line in high-level expression of erythropoietin Park, J. H.;C. Kim;W. B. Kim;Y. K. Kim;S. Y. Lee;J. M. Yang https://doi.org/10.1042/BA20000057
  28. Annu. Rev. Biochem. v.57 Glycobiology Rademacher, T. W.;R. B. Parekh;R. A. Dwek https://doi.org/10.1146/annurev.bi.57.070188.004033
  29. Biotechnol. Lett. v.10 Evidence that monoclonal antibody production kinetics is related to the integral of viable cells in batch systems Renard, J. M.;R. Spagnoli;C. Mazier;M. F. Salles;E. Mandine https://doi.org/10.1007/BF01024632
  30. J. Biotechnol. v.46 The importance of ammonia in mammalian cell cultures Schneider, M.;I. W. Marison;U. von Stockar https://doi.org/10.1016/0168-1656(95)00196-4
  31. Glycobiology v.1 Structures and functional roles of the sugar chains of human erythropoietins Takeuchi, M.;A. Kobata https://doi.org/10.1093/glycob/1.4.337
  32. Eur. J. Biochem. v.188 The role of cabohydrate in recombinant human erythropoietin Tsuda, E.;G. Kawanishi;M. Ueda;S. Masuda;R. Sasaki https://doi.org/10.1111/j.1432-1033.1990.tb15417.x
  33. Anal. Biochem. v.163 A rapid assay method for ammonia using glutamine synthetase from glutamateproducing bacteria Wakisaka, S.;T. Tachiki;H. C. Sung;H. Kumagai;T. Tochikura;S. Matsui https://doi.org/10.1016/0003-2697(87)90101-1
  34. Biotechnol. Bioeng. v.77 Erythropoietin production from CHO cell grown by continuous cultue in a fluidized-bed bioreactor Wang, M. D.;M. Yang;N. Huzel;M. Butler https://doi.org/10.1002/bit.10144
  35. Blood v.77 The importance of N-and O-linked oligosaccharides for the biosynthesis and in vitro and in vivo biologic activities of erythropoietin Wasley, L. C.;G. Timony;P. Murtha;J. Stoudermire;A. J. Dorner;J. Caro;M. Krieger;R. J. Kaufman
  36. Biotechnol. Bioeng. v.68 Effects of ammonia on CHO cell growth, erythropoietin production, and glycosylation Yang, M.;M. Butler https://doi.org/10.1002/(SICI)1097-0290(20000520)68:4<370::AID-BIT2>3.0.CO;2-K
  37. Biotechnol. Prog. v.18 Effects of ammonia and glucosamine on the heterogeneity of erythropoietin glycoforms Yang, M.;M. Butler https://doi.org/10.1021/bp0101334
  38. J. Biotechnol. v.101 Evaluation of phenylboronate agarose for indusrial-scale purification of erythropoietin from mammalian cell cultures Zanette, D.;A. Soffientini;C. Sottani;E. Sarubbi https://doi.org/10.1016/S0168-1656(02)00357-7
  39. Biotechnol. Prog. v.14 Role of nucleotide sugar pools in the inhibition of NCAM polysialylation by ammonia Zanghi, J. A.;T. P. Mendoza;A. E. Schmelzer;R. H. Knop;W. M. Miller https://doi.org/10.1021/bp9800945