Genes for the Catabolism of Deoxyfructosyl Glutamine in pAtC58 Are Attributed to Utilization of Octopine in Agrobacterium tumefaciens Strain NT1

  • 발행 : 2004.08.01

초록

Nopaline-type Agrobacterium tumefaciens strain C58 cannot utilize octopine (Oct) as the sole carbon and nitrogen sources. This strain harbors two plasmids; a virulent plasmid, pTiC58, and a megaplasmid, pAtC58. From strain NT1, which is a derivative of C58 harboring only pAtC58, we isolated spontaneous mutants that utilize Oct as the sole nitrogen source. These Oct-catabolizing mutants, however, could not utilize the opine as the sole carbon source. In contrast, strain UIA5, a plasmid-free derivative of C58, could not give rise to such mutants. The mutations isolated from NT1 were mapped to socR in pAtC58, which is a negative regulator of the soc operon responsible for the uptake and catabolism of an Amadori opine, deoxyfructosyl glutamine (Dfg). A derivative of UIA5 carrying a clone of the soc operon with a transposon inserted in socR also utilizes Oct as the sole nitrogen source. However, UIA5 harboring the operon with mutations in each of the structural genes in the soc operon, socA, B, C, and D, lost the ability to generate spontaneous Oct-utilizing mutants, suggesting that soc genes in pAtC58 are required for the utilization of Oct as a nitrogen source, and that derepressed expression of these genes allows cells to utilize Oct. In contrast, Oct-catabolizing mutants derived from C58, which grew using Oct as the sole nitrogen source, could also utilize the opine as the sole carbon source. These mutants did not carry any detectable mutations in socR or the region upstream to the gene in pAtC58, suggesting that mutations occurring elsewhere in the genome, most likely in pTiC58, allow the uptake and catabolism of the opine.

키워드

참고문헌

  1. J. Mol. Biol. v.215 Basic local alignment search tool Altschul, S. F.;W. Gish;W. Miller;E. W. Myers;D. J. Lipman https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Aust. J. Chem. v.10 Chemistry of non-enzymic browning; I. Reactions between amino acids, organic acids, and sugars in freeze-dried apricots and peaches Anet, E .F. L. G.;T. M. Reynolds https://doi.org/10.1071/CH9570182
  3. J. Bacteriol. v.185 Convergent evolution of Amadori opine catabolic systems in plasmids of Agrobacterium tumefaciens Baek, C.-H.;S. K. Farrand;K.-E. Lee;D.-K. Park;J. K. Lee;K.-S. Kim https://doi.org/10.1128/JB.185.2.513-524.2003
  4. J. Microbiol. Biotechnol. v.13 lacZ- and aph-based vectors for in vivo expression technology Beak, C.-H.;K. S. Kim
  5. J. Bacteriol. v.158 Mannityl opine analogs allow isolation of catabolic pathway regulatory mutants Chilton, W. S.;M.-D. Chilton
  6. Phytochemistry v.40 The crysopine family of Amadori-type crown gall opines Chilton, W. S.;A. N. Stomp;W. Beringue;H. Bouzar;V. Vaudequin-Dransart;A. Petit;Y. Dessaux https://doi.org/10.1016/0031-9422(93)00283-L
  7. The Rhizobiaceae, Molecular Biology of Model Plant-Associated Bacteria Opines and opine-like molecules involed in plant-Rhizobiaceae interactionss Dessaux, Y.;A. Petit;S. K. Farrand;P. J. Murphy;H. P. Spaink(ed.);A. Kondorisi(ed.);P. J. J. Hooykaas(ed.)
  8. Mol. Gen. Genet. v.195 Agrobacterium tumefaciens T(TEX>$_R$-DNA codes a pathway for agropine biosynthesis Ellis, J. G.;M. M. Ryder;M. E. Tate https://doi.org/10.1007/BF00341448
  9. Science v.14 Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58 Goodner, B.;G. Hinkle;S. Gattung;N. Miller;M. Blanchard;B. Qurollo;B. S. Goldman;Y. Cao;M. Askenazi;C. Halling;L. Mullin;K. Houmiel;J. Gordon;M. Vaudin;O. Iartchouk;A. Epp;F. Liu;C. Wollam;M.Allinger;D. Doughty;C. Scott;C. Lappas;B. Markelz;C. Flanagan;C. Crowell;J. Gurson;C. Lomo;C. Sear;G. Strub;C. Cielo;S. Slater
  10. Mol. Plant-Microbe Interact. v.6 Transformed plants producing opines specifically promote growth of opine-degrading agrobacteria Guyon, P.;A. Petit;J. Tempe;Y. Dessaux https://doi.org/10.1094/MPMI-6-092
  11. Agric. Biol. Chem. v.53 Purification and properties of a fructosyl-amino acid oxidase from Corynebacterium sp. 2-4-1 Horiuchi, T.;T. Kurokawa;N. Saito https://doi.org/10.1271/bbb1961.53.103
  12. J. Microbiol. Biotechnol. v.9 Analysis of trans-acting elements for regulation of moc operon of pTil5955 in Agrobacterium tumefaciens Jung, W.-H.;C.-H. Baek;J. K. Lee;K. S. Kim
  13. Appl. Environ. Microbiol. v.56 Agrobacterium tumefaciens is a diazotrophic bacterium Kanvinde, L.;G. R. K. Sastry
  14. Gene v.70 Improved broad-host range plasmids for DNA cloning in Gram-negative bacteria Keen, N. T.;S. Takami;D. Kobayashi;D. Trollinger https://doi.org/10.1016/0378-1119(88)90117-5
  15. J. Microbiol. Biotechnol. v.12 FAME analysis to monitor impact of organic matter on soil bacterial populations Kim, J.-S.;J.-B. Joo;H.-Y. Weon;C.-S. Kang;S.-K. Lee;C.-S. Yahng
  16. J. Microbiol. Biotechnol. v.13 Analysis of bacterial community structure in bulk soil, rhizosphere soil, and root samples of hot pepper plants using FAME and 16S rDNA clone libraries Kim, J.-S.;S.-W. Kwon;F. Jordan;J. C. Ryu
  17. J. Microbiol. Biotechnol. v.13 Identification and characterization of the Vibrio vulnificus phosphomannomutase gene Lee, J. H.;N. Y. Park;S.-J.Park;S. H. Choi
  18. Nat. Biotechnol. v.15 Genetically egineered plants producing opines alter their biological environment Oger, P.;A. Petit;Y. Dessaux https://doi.org/10.1038/nbt0497-369
  19. Mol. Gen. Genet. v.90 Further extension of the opine concept: Plasmids in Agrobacterium rhizogenes cooperate for opine degradation Petit, A.;C. David;G. A. Dahl;J. G. Ellis;P. Guyon
  20. FEBS Lett. v.459 Production of fungal fructosyl amino acid oxidase useful for diabetic diagnosis in the peroxisome of Candida bolidinii Sakai, Y.;H. Yoshida;H. Yurimoto;N. Yoshida;H. Fukuya;K. Takabe;N. Kado https://doi.org/10.1016/S0014-5793(99)01245-4
  21. Molecular Cloning: A Laboratory Manual Sambrook, J.;E. F. Fritsch;T. A. Maniatis
  22. Nat. Biotechnol. v.15 Modification of rhizobacterial populations by engineering bacterial utilization of a novel plant-produced resource Savka, M. A.;S. K. Farrand https://doi.org/10.1038/nbt0497-363
  23. J. Biol. Chem. v.271 Purification and chracterization of a membrane-bound deglycating enzyme (L-deoxfructosyl alkyl amino acid oxidae, EC 1.5.3) from Pseudomonas sp. soil strain Saxena, A. K.;P. Saxena;V. M. Monnier https://doi.org/10.1074/jbc.271.51.32803
  24. J. Biol. Chem. v.272 Isolation, purification, and characteization of amadoriase isoenzymes (fructosyl amine-oxygen oxidoreductase EC 1.5.3) from Aspergillus sp. Takahashi, M.;M. Pischetsrieder;V. M. Monnier https://doi.org/10.1074/jbc.272.6.3437
  25. Plant Physiol. v.133 The Agrobacterium-plant cell interaction. Taking biology lessons from a bug Tzfira, T.;V. Citovsky https://doi.org/10.1104/pp.103.032821
  26. Mol. Plant-microbe Interact. v.11 The cryptic plasmid of Agrobacterium tumefaciens cointegrates with the Ti plasmid and cooperates for opine degradation Vaudequin-Dransart, V.;A. Petit;W. S. Chilton;Y. Dessaux https://doi.org/10.1094/MPMI.1998.11.7.583
  27. Mol. Plant-Microbe Interact. v.8 Novel Ti plasmids in Agrobacterium strains isolated from fig tree and chrysanthemum tumors and their opinelike molecules Vaudequin-Dransart, V.;A. Petit;C. Poncet;C. Ponsonnet;X. Nesme;J. B. Jones;H. Bouzar;W. S. Scott;Y. Dessaux https://doi.org/10.1094/MPMI-8-0311
  28. Appl. Environ. Microbiol. v.61 Altered epiphytic colonization of mannityl opineproducing transgenic tobacco plants by a mannityl opine-catabolizing strain of Pseudomonas syringae Wilson, M.;M. A. Savka;S. K. Farrand;S. E. Lindow
  29. J. Bacteriol. v.182 The bases of crown gall tumorigenesis Zhu, J.;P. M. Oger;B. Schrammeurer;P. J. J. Hooykaas;S. K. Farrand;S. C. Winans https://doi.org/10.1128/JB.182.14.3885-3895.2000