References
- Physical Chemistry(6th Ed.) Atkins, P. W.
- Biotechnol. Bioprocess Eng. v.5 Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol Chandrakant, P.;V. S. Bisaria https://doi.org/10.1007/BF02932350
- Biotechnol. Lett. v.22 Production of xylitol in cell recycle fermentations of Candida tropicalis Choi, J. H.;K. H. Moon;Y. W. Ryu;J. H. Seo https://doi.org/10.1023/A:1005693427389
- J. Bacteriol. v.176 Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis Deutscher, J.;J. Reizer;C. Fischer;A. Galinier;M. H. Saier, Jr.;M. Steinmetz https://doi.org/10.1128/jb.176.11.3336-3344.1994
-
J. Ind. Microbiol.
v.17
$_D-$ Glucose does not catabolite repress a transketolasedeficient$_D-$ ribose-producing Bacillus subtilis mutant strain De Wulf, P.;W. Soetaert;D. Schwengers;E. J. Vandamme https://doi.org/10.1007/BF01570052 -
J. Chem. Technol. Biotechnol.
v.70
Specific organic acids enhance the
$_D-$ ribose productivity of a transketolase-defective Bacillus subtilis strain De Wulf, P.;W. Soetaert;D. Schwengers;E. J. Vandamme https://doi.org/10.1002/(SICI)1097-4660(199711)70:3<311::AID-JCTB758>3.0.CO;2-8 -
Appl. Microbiol. Biotechnol.
v.48
Production of
$_D-$ ribose De Wulf, P.;E. J. Vandamme https://doi.org/10.1007/s002530051029 -
J. Appl. Microbiol.
v.83
Optimization of
$_D-$ ribose production with a transketolaseaffected Bacillus subilis mutant strain in glucose and gluconic acid-base media De Wulf, P.;W. Soetaert;D. Schwengers;E. J. Vandamme https://doi.org/10.1046/j.1365-2672.1997.00161.x - Proc. Nat. Acad. Sci. USA v.68 Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium Eidels, L.;M. J. Osborn https://doi.org/10.1073/pnas.68.8.1673
- J. Microbiol. Biotechnol. v.11 Carbon catabolite repression (CCR) of expression of the xylanaseA gene of Bacillus stearothermophilus No. 236 Ha, G. S.;I. D. Choi;Y. J. Choi
- Appl. Microbiol. Biotechnol. v.57 Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system Hernandez-Montalvo, V.;F. Valle;F. Bolivar;G. Gosset https://doi.org/10.1007/s002530100752
- Appl. Microbiol. Biotechnol. v.50 A transketolase mutant of Corynebacterium glutamicum Ikeda, M.;K. Okamoto;R. Katsumata https://doi.org/10.1007/s002530051307
- Mol. Gen. Genet. v.229 Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame Jacob, S.;R. Allmansberger;D. Gartner;W. Hillen https://doi.org/10.1007/BF00272155
- J. Microbiol. Biotechnol. v.10 Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis Jin, Y. S.;T. H. Lee;Y. D. Choi;Y. W. Ryu;J. H. Seo
- J. Bacteriol. v.100 Transketolase mutants of Escherichia coli Josephson, B.;D. G. Frankel
- J. Bacteriol. v.118 Sugar metabolism in transketolase mutants of Escherichia coli Josephson, B.;D. G. Frankel
- J. Microbiol. Biotechnol. v.11 High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis Kim, M. S.;Y. S. Chung;J. H. Seo;D. H. Jo;Y. H. Park;Y. W. Ryu
- Annu. Rev. Microbiol. v.42 Genetics and regulation of carbohydrate catabolism in Bacillus Klier, A. F.;G. Rapoport https://doi.org/10.1146/annurev.mi.42.100188.000433
- Biotechnol. Bioprocess Eng. v.5 A parametric study on ethanol production from xylose by Pichia stipitis Lee, T. Y.;M. D. Kim;K. Y. Kim;K. M. Park;Y. W. Ryu;J. H. Seo https://doi.org/10.1007/BF02932349
- J. Microbiol. Biotechnol. v.13 Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae Lee, W. J.;M. D. Kim;M. S. Kim;Y. W. Ryu;J. H. Seo
- Eur. J. Med. Res. v.16 Effect of ribose on cardiac adenine nucleotides in a donor model for heart transplantation Muller, C.;H. G. Zimmer;M. Gross;U. Gresser;I. Brotsack;M. Wehling;W. Pliml
-
J. Bacteriol.
v.180
Characterization of glucose-specific catabolite repressionresistant mutants of Bacillus subtilis: Identification of a novel hexose:H
$H^+$ symporter Paulsen, I. T.;S. Chauvaux;P. Choi;M. H. Saier, Jr. - Bacillus subtilis and Other Gram-Positive Bacteria Transport mechanisms Saier, Jr. M. H.;M. J. Fagan;C. Hoischen;J. Reizer
-
Agr. Biol. Chem.
v.35
Carbohydrate metabolismmutants of a Bacillus species. Part Ⅱ.
$_D$ -Ribose accumulation by pentose phosphate pathway mutant Sasajima, K.;M. Yoneda https://doi.org/10.1271/bbb1961.35.509 - Eur. J. Biochem. v.217 TKL2, a second transketolse gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene Schaaff-Gerstenschlager, I.;G. Mannhaupt;I. Vetter;F. K. Zimmermann https://doi.org/10.1111/j.1432-1033.1993.tb18268.x
- Mol. Gen. Genet. v.250 Contribution of XyIR, CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose Schmiedel, D.;W. Hillen
-
Korea Patent. Filed No. 10-2002-057580.
A biological method for producing
$_D-$ ribose from$_D-$ xylose using a Bacillus subtilis mutant Seo, J. H.;Y. C. Park;S. Y. Kim;J. K. Lee;S. J. Ha;S. K. Kim - Annu. Rev. Microbiol. v.54 Regulation of carbon catabolism in Bacillus species Stulke, J.;W. Hillen https://doi.org/10.1146/annurev.micro.54.1.849
- J. Mol. Microbiol. Biotechnol. v.2 Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI Wagner, A.;E. Kuster-Schock;W. Hillen
- J. Appl. Physiol. v.91 Influence of ribose on adenine salvage after intense muscle contractions Zarzeczny, R.;J. J. Brault,;K. A. Abraham;C. R. Hancock;R. L. Terjung https://doi.org/10.1152/jappl.2001.91.4.1775
- Science v.220 Normalization of depressed heart function in rats by ribose Zimmer, H. G. https://doi.org/10.1126/science.6402820