Optimization of Culture Conditions for D-Ribose Production by Transketolase-Deficient Bacillus subtilis JY1

  • Park, Yong-Cheol (Department of Biochemistry and Cell Biology, Rice University) ;
  • Seo, Jin-Ho (Interdisciplinary Program for Biochemical Engineering and Biotechnology, Seoul National University)
  • Published : 2004.08.01

Abstract

D-Ribose is a five-carbon sugar used for the commercial synthesis of riboflavin, antiviral agents, and flavor enhancers. Batch fermentations with transketolase-deficient B. subtilis JY1 were carried out to optimize the production of D-ribose from xylose. The best results for the fermentation were obtained with a temperature of $37^{\circ}C$ and an initial pH of 7.0. Among various sugars and sugar alcohols tested, glucose and sucrose were found to be the most effective for both cell growth and D-ribose production. The addition of 15 g/l xylose and 15 g/l glucose improved the fermentation performance, presumably due to the adequate supply of ATP in the xylose metabolism from D-xylulose to D-xylulose-5-phosphate. A batch culture in a 3.7-1 jar fermentor with 14.9 g/l xylose and 13.1 g/l glucose resulted in 10.1 g/l D-ribose concentration with a yield of 0.62 g D-ribose/g sugar consumed, and 0.25 g/l-h of productivity. Furthermore, the sugar utilization profile, indicating the simultaneous consumption of xylose and glucose, and respiratory parameters for the glucose and sucrose media suggested that the transketolase-deficient B. subtilis JY1 lost the glucose-specific enzyme II of the phosphoenolpyruvate transferase system.

Keywords

References

  1. Physical Chemistry(6th Ed.) Atkins, P. W.
  2. Biotechnol. Bioprocess Eng. v.5 Application of a compatible xylose isomerase in simultaneous bioconversion of glucose and xylose to ethanol Chandrakant, P.;V. S. Bisaria https://doi.org/10.1007/BF02932350
  3. Biotechnol. Lett. v.22 Production of xylitol in cell recycle fermentations of Candida tropicalis Choi, J. H.;K. H. Moon;Y. W. Ryu;J. H. Seo https://doi.org/10.1023/A:1005693427389
  4. J. Bacteriol. v.176 Loss of protein kinase-catalyzed phosphorylation of HPr, a phosphocarrier protein of the phosphotransferase system, by mutation of the ptsH gene confers catabolite repression resistance to several catabolic genes of Bacillus subtilis Deutscher, J.;J. Reizer;C. Fischer;A. Galinier;M. H. Saier, Jr.;M. Steinmetz https://doi.org/10.1128/jb.176.11.3336-3344.1994
  5. J. Ind. Microbiol. v.17 $_D-$Glucose does not catabolite repress a transketolasedeficient $_D-$ribose-producing Bacillus subtilis mutant strain De Wulf, P.;W. Soetaert;D. Schwengers;E. J. Vandamme https://doi.org/10.1007/BF01570052
  6. J. Chem. Technol. Biotechnol. v.70 Specific organic acids enhance the $_D-$ribose productivity of a transketolase-defective Bacillus subtilis strain De Wulf, P.;W. Soetaert;D. Schwengers;E. J. Vandamme https://doi.org/10.1002/(SICI)1097-4660(199711)70:3<311::AID-JCTB758>3.0.CO;2-8
  7. Appl. Microbiol. Biotechnol. v.48 Production of $_D-$ribose De Wulf, P.;E. J. Vandamme https://doi.org/10.1007/s002530051029
  8. J. Appl. Microbiol. v.83 Optimization of $_D-$ribose production with a transketolaseaffected Bacillus subilis mutant strain in glucose and gluconic acid-base media De Wulf, P.;W. Soetaert;D. Schwengers;E. J. Vandamme https://doi.org/10.1046/j.1365-2672.1997.00161.x
  9. Proc. Nat. Acad. Sci. USA v.68 Lipopolysaccharide and aldoheptose biosynthesis in transketolase mutants of Salmonella typhimurium Eidels, L.;M. J. Osborn https://doi.org/10.1073/pnas.68.8.1673
  10. J. Microbiol. Biotechnol. v.11 Carbon catabolite repression (CCR) of expression of the xylanaseA gene of Bacillus stearothermophilus No. 236 Ha, G. S.;I. D. Choi;Y. J. Choi
  11. Appl. Microbiol. Biotechnol. v.57 Characterization of sugar mixtures utilization by an Escherichia coli mutant devoid of the phosphotransferase system Hernandez-Montalvo, V.;F. Valle;F. Bolivar;G. Gosset https://doi.org/10.1007/s002530100752
  12. Appl. Microbiol. Biotechnol. v.50 A transketolase mutant of Corynebacterium glutamicum Ikeda, M.;K. Okamoto;R. Katsumata https://doi.org/10.1007/s002530051307
  13. Mol. Gen. Genet. v.229 Catabolite repression of the operon for xylose utilization from Bacillus subtilis W23 is mediated at the level of transcription and depends on a cis site in the xylA reading frame Jacob, S.;R. Allmansberger;D. Gartner;W. Hillen https://doi.org/10.1007/BF00272155
  14. J. Microbiol. Biotechnol. v.10 Conversion of xylose to ethanol by recombinant Saccharomyces cerevisiae containing genes for xylose reductase and xylitol dehydrogenase from Pichia stipitis Jin, Y. S.;T. H. Lee;Y. D. Choi;Y. W. Ryu;J. H. Seo
  15. J. Bacteriol. v.100 Transketolase mutants of Escherichia coli Josephson, B.;D. G. Frankel
  16. J. Bacteriol. v.118 Sugar metabolism in transketolase mutants of Escherichia coli Josephson, B.;D. G. Frankel
  17. J. Microbiol. Biotechnol. v.11 High-yield production of xylitol from xylose by a xylitol dehydrogenase defective mutant of Pichia stipitis Kim, M. S.;Y. S. Chung;J. H. Seo;D. H. Jo;Y. H. Park;Y. W. Ryu
  18. Annu. Rev. Microbiol. v.42 Genetics and regulation of carbohydrate catabolism in Bacillus Klier, A. F.;G. Rapoport https://doi.org/10.1146/annurev.mi.42.100188.000433
  19. Biotechnol. Bioprocess Eng. v.5 A parametric study on ethanol production from xylose by Pichia stipitis Lee, T. Y.;M. D. Kim;K. Y. Kim;K. M. Park;Y. W. Ryu;J. H. Seo https://doi.org/10.1007/BF02932349
  20. J. Microbiol. Biotechnol. v.13 Effects of xylose reductase activity on xylitol production in two-substrate fermentation of recombinant Saccharomyces cerevisiae Lee, W. J.;M. D. Kim;M. S. Kim;Y. W. Ryu;J. H. Seo
  21. Eur. J. Med. Res. v.16 Effect of ribose on cardiac adenine nucleotides in a donor model for heart transplantation Muller, C.;H. G. Zimmer;M. Gross;U. Gresser;I. Brotsack;M. Wehling;W. Pliml
  22. J. Bacteriol. v.180 Characterization of glucose-specific catabolite repressionresistant mutants of Bacillus subtilis: Identification of a novel hexose:H $H^+$ symporter Paulsen, I. T.;S. Chauvaux;P. Choi;M. H. Saier, Jr.
  23. Bacillus subtilis and Other Gram-Positive Bacteria Transport mechanisms Saier, Jr. M. H.;M. J. Fagan;C. Hoischen;J. Reizer
  24. Agr. Biol. Chem. v.35 Carbohydrate metabolismmutants of a Bacillus species. Part Ⅱ. $_D$-Ribose accumulation by pentose phosphate pathway mutant Sasajima, K.;M. Yoneda https://doi.org/10.1271/bbb1961.35.509
  25. Eur. J. Biochem. v.217 TKL2, a second transketolse gene of Saccharomyces cerevisiae. Cloning, sequence and deletion analysis of the gene Schaaff-Gerstenschlager, I.;G. Mannhaupt;I. Vetter;F. K. Zimmermann https://doi.org/10.1111/j.1432-1033.1993.tb18268.x
  26. Mol. Gen. Genet. v.250 Contribution of XyIR, CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose Schmiedel, D.;W. Hillen
  27. Korea Patent. Filed No. 10-2002-057580. A biological method for producing $_D-$ribose from $_D-$xylose using a Bacillus subtilis mutant Seo, J. H.;Y. C. Park;S. Y. Kim;J. K. Lee;S. J. Ha;S. K. Kim
  28. Annu. Rev. Microbiol. v.54 Regulation of carbon catabolism in Bacillus species Stulke, J.;W. Hillen https://doi.org/10.1146/annurev.micro.54.1.849
  29. J. Mol. Microbiol. Biotechnol. v.2 Sugar uptake and carbon catabolite repression in Bacillus megaterium strains with inactivated ptsHI Wagner, A.;E. Kuster-Schock;W. Hillen
  30. J. Appl. Physiol. v.91 Influence of ribose on adenine salvage after intense muscle contractions Zarzeczny, R.;J. J. Brault,;K. A. Abraham;C. R. Hancock;R. L. Terjung https://doi.org/10.1152/jappl.2001.91.4.1775
  31. Science v.220 Normalization of depressed heart function in rats by ribose Zimmer, H. G. https://doi.org/10.1126/science.6402820