Effect of Salt Concentration on the Glass Transition Temperature and Ionic Conductivity of Poly(ethylene glycol)-Polyurethane/$LiClO_4$ Complexes

  • Huh, Pil-Ho (Department of Polymer Science and Engineering, Pusan National University) ;
  • Park, Myung-Geun (Department of Polymer Science and Engineering, Pusan National University) ;
  • Jo, Nam-Ju (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lee, Jin-Kook (Department of Polymer Science and Engineering, Pusan National University) ;
  • Lee, Jang-Oo (Department of Polymer Science and Engineering, Pusan National University) ;
  • Wongkang Yang (Department of Chemistry, College of Natural Science, Dongguk University)
  • Published : 2004.08.01

Abstract

Solid polymer electrolytes based on poly(ethylene glycol)-polyurethane (PEG-PU) complexed with LiClO$_4$ salt have been prepared by the solvent casting method. A PEG-PU material (PEG:4,4'-diphenylmethane diisocyanate: l,4-butanediol = 1:2:1) was synthesized through a typical two-step condensation reaction. We investigated the effects of the salt concentration on the ionic conductivity ($\sigma$) and the glass transition temperature (T$_{g}$ ) of the complex electrolytes by using alternating current impedance spectroscopy, differential scanning calorimetry, and dynamic mechanical thermal analysis. The measured values of both $\sigma$ and T$_{g}$ exhibited similar tendencies in that they had maxima within the range studied, probably because of two opposite effects, i.e., the increased number of carrier ions and the decreased chain mobility (or increased T$_{g}$ ) caused by the increase in the salt concentration. The highest conductivity, on the order of 2.43 ${\times}$ 10$^{6}$ S$cm^{-1}$ /, was obtained at an [O]/[Li$^{+}$] ratio of ca. 16 (0.92 ㏖ salt per kg of matrix polymer).

Keywords

References

  1. Polymer v.14 D. E. Fenton;J. M. Parker;P. V. Wright
  2. Polym. J. v.7 P. V. Wright https://doi.org/10.1002/pi.4980070505
  3. Polymer Electrolyte Reviews v.1 J. R. MacCallum;C. A. Vincent
  4. Advances in Chemistry Series187 The Viscosity Enhancement of Polyethers by Salts. In lons in Polymers A. Eisenberg;K. Ovans;H. N. Yoon;A. Eisenberg(ed.)
  5. Proc. Int. Conf. Polyethrs as Solid Electrolytes. In Fast lon Transport in Solids:Electrodes Electrolytes M. B. Armand;J. M. Chabagano;M. J. Duclot;P. Vashishta(ed.);J. N. Mundy(ed.);G. K. Shenoy(ed.)
  6. Chemical and Engineering News
  7. J. Am. Chem. Soc. v.109 S. Chao;M. S. Wrighton https://doi.org/10.1021/ja00241a057
  8. J. Mac. Sci. Chem. v.A25 no.5-7 E. Tsuchida
  9. Nature v.335 no.6186 J. H. Burroughes;C. A. Jones;R. H. Friend https://doi.org/10.1038/335137a0
  10. J. Appl. Polym. Sci. v.49 G. Robila;M. Ivanoin;E. C. Buruiana https://doi.org/10.1002/app.1993.070491120
  11. J. Polym. Sci.: Polym. Chem v.31 V. Okamoto;T. F. Yeh;H. S. Lee;T. A. Skotheimic https://doi.org/10.1002/pola.1993.080311018
  12. Polymer v.41 T. C. Wen;S. S. Luo;C. H. Yang https://doi.org/10.1016/S0032-3861(00)00023-9
  13. Electrochim Acta v.40 J. P. Donoso;T. J. Bonagamba;P. L. Frare;H. Panepucci https://doi.org/10.1016/0013-4686(95)00194-J
  14. Solid State Ionics v.85 J. L. Acosta;E. Morales https://doi.org/10.1016/0167-2738(96)00045-8
  15. Electrochim. Acta v.43 E. Strauss;D. Golodnitsky;G. Ardel;E. Peled https://doi.org/10.1016/S0013-4686(97)10036-6
  16. Macromolecules v.33 J. Y. Kim;S. U. Hong;J. Won;Y. S. Kang
  17. J. Phys. Chem. B v.107 J. H. Kim;B. R. Min;J. Won;Y. S. Kang https://doi.org/10.1021/jp026858n
  18. M. S. Thesis, Pusan National University P. H. Huh
  19. J. Chem. Phys. v.9 K. S. Cole;S. Cole https://doi.org/10.1063/1.1750906
  20. ACS Books Symp. Ser. 424 Sound and Vibration Damping with Polymers L. H. Sperling;R. D. Corsaro(ed.);L. H. Sperling(ed.)
  21. J. Polym. Sci. v.19 E. Catsiff;A. V. Tobolsky https://doi.org/10.1002/pol.1956.120199111