References
- Bioinformatics v.19 Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically Bickel, D.R.
- Journal of the Korean Statistical Society v.20 A method to predict the number of clusters Chae, S.S.;Warde, W.D.
- Proceeding of National Academy Sciences in USA v.100 Shrinkage-based smilarity metric for cluster analysis of microarray data Cherpinsky ,V.;Feng, J.;Rejali, M.;Mishra, B. https://doi.org/10.1073/pnas.1633770100
- The Canadian Journal of Statistics v.7 A mathematical comparison of the members of an infinite family of agglomerative clustering algorithms DuBien, J.L.;Warde, W.D. https://doi.org/10.2307/3315012
- ASA Proceedings of the Social Statistics Section Some distributional results concerning a comparative statistic used in cluster analysis DuBien, J.L.;Warde, W.D.
- Communications in Statistics, Theory and Method v.16 A comparison of agglomerative clustering method with respect to noise DuBien, J.L.;Warde, W.D. https://doi.org/10.1080/03610928708829447
- Statistics & Probability Letters Moments of Rand's C Statistic in cluster analysis DuBien, J.L.;Warde, W.D.;Chae, S.S.
- Proceeding of National Academy Sciences in USA v.95 Cluster analysis and display of genome-wide expression patterns Eisen, M.B.;Spellman, P.O.;Brown, P. O.;Botstein, D.
- Journal of American Statistical Association v.78 A method for comparing two hierarchical clusterings Fowlkes, E.B.;Mallows, C.L. https://doi.org/10.2307/2288117
- Biometrika v.53 Some distance properties of latent root and vector mehtods used in multivariate analysis Gower, J.C. https://doi.org/10.1093/biomet/53.3-4.325
- Journal of Biological Chemistry v.277 Transcriptional profiling of bone regeneration; insight into the molecular complexity of wound repair Hadjiargyrou, M.;Lombardo, F.;Zhao, S.;Ahrens, W.;Joo, J.;Ahn, H.;White, D.W.;Rubin, C.T. https://doi.org/10.1074/jbc.M203171200
- Applied Multivariate Statistical Analysis(4th Edition) Johnson, R.A.;Wichern, D.W.
- The Korean Communications in Statistics v.10 Statistical methods for gene expression data Kim, Choongrak
- Computational Statistics & Data Analysis v.46 Agglomerative hierarchical clustering of continuous variables based on mutual information Kojadinovic, I, https://doi.org/10.1016/S0167-9473(03)00153-1
- Proceeding of National Academy Sciences in USA v.96 Distinctive gene expression patterns in human mammary epithelial cells and breast cancers Perou, C.M.;Jeffrey, S.S.;Rijn, M.V.;Rees, C.A.;Eisen, M.B.;Ross, D.T.;Pergamenschikov, A.;Wiliams, C.R.;Zhu, S.X.;Lee, J.C.F.;Lashkari, D.;Shalon, D.;Brown, P.O.;Botstein, D. https://doi.org/10.1073/pnas.96.16.9212
- Journal of the American Statistical in USA v.96 Objective criteria for the evaluation of clustering methods Rand, W.M. https://doi.org/10.1080/01621459.1971.10482356
- Molecular Biology of the Cell v.9 Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Spellman, P.T.;Sherlock, G.;Zhang, M.Q.;Iyer, V.R.;Eisen, M.B.;Brown, P.O.;Botstein, D.;Futcher, B. https://doi.org/10.1091/mbc.9.12.3273
- Journal of Pathology v.195 Analysing gene expression data from DNA microarrays to identify candidate genes Wu, Thomas D. https://doi.org/10.1002/1096-9896(200109)195:1<53::AID-PATH891>3.0.CO;2-H