DOI QR코드

DOI QR Code

Recovery Levels of Clustering Algorithms Using Different Similarity Measures for Functional Data

  • Chae, Seong San (Department of Information and Statistics, Daejeon University) ;
  • Kim, Chansoo (Department of Statistics, Oklahoma State University) ;
  • Warde, William D. (Department of Statistics, Oklahoma State university)
  • Published : 2004.08.01

Abstract

Clustering algorithms with different similarity measures are commonly used to find an optimal clustering or close to original clustering. The recovery level of using Euclidean distance and distances transformed from correlation coefficients is evaluated and compared using Rand's (1971) C statistic. The C values present how the resultant clustering is close to the original clustering. In simulation study, the recovery level is improved by applying the correlation coefficients between objects. Using the data set from Spellman et al. (1998), the recovery levels with different similarity measures are also presented. In general, the recovery level of true clusters was increased by using the correlation coefficients.

Keywords

References

  1. Bioinformatics v.19 Robust cluster analysis of microarray gene expression data with the number of clusters determined biologically Bickel, D.R.
  2. Journal of the Korean Statistical Society v.20 A method to predict the number of clusters Chae, S.S.;Warde, W.D.
  3. Proceeding of National Academy Sciences in USA v.100 Shrinkage-based smilarity metric for cluster analysis of microarray data Cherpinsky ,V.;Feng, J.;Rejali, M.;Mishra, B. https://doi.org/10.1073/pnas.1633770100
  4. The Canadian Journal of Statistics v.7 A mathematical comparison of the members of an infinite family of agglomerative clustering algorithms DuBien, J.L.;Warde, W.D. https://doi.org/10.2307/3315012
  5. ASA Proceedings of the Social Statistics Section Some distributional results concerning a comparative statistic used in cluster analysis DuBien, J.L.;Warde, W.D.
  6. Communications in Statistics, Theory and Method v.16 A comparison of agglomerative clustering method with respect to noise DuBien, J.L.;Warde, W.D. https://doi.org/10.1080/03610928708829447
  7. Statistics & Probability Letters Moments of Rand's C Statistic in cluster analysis DuBien, J.L.;Warde, W.D.;Chae, S.S.
  8. Proceeding of National Academy Sciences in USA v.95 Cluster analysis and display of genome-wide expression patterns Eisen, M.B.;Spellman, P.O.;Brown, P. O.;Botstein, D.
  9. Journal of American Statistical Association v.78 A method for comparing two hierarchical clusterings Fowlkes, E.B.;Mallows, C.L. https://doi.org/10.2307/2288117
  10. Biometrika v.53 Some distance properties of latent root and vector mehtods used in multivariate analysis Gower, J.C. https://doi.org/10.1093/biomet/53.3-4.325
  11. Journal of Biological Chemistry v.277 Transcriptional profiling of bone regeneration; insight into the molecular complexity of wound repair Hadjiargyrou, M.;Lombardo, F.;Zhao, S.;Ahrens, W.;Joo, J.;Ahn, H.;White, D.W.;Rubin, C.T. https://doi.org/10.1074/jbc.M203171200
  12. Applied Multivariate Statistical Analysis(4th Edition) Johnson, R.A.;Wichern, D.W.
  13. The Korean Communications in Statistics v.10 Statistical methods for gene expression data Kim, Choongrak
  14. Computational Statistics & Data Analysis v.46 Agglomerative hierarchical clustering of continuous variables based on mutual information Kojadinovic, I, https://doi.org/10.1016/S0167-9473(03)00153-1
  15. Proceeding of National Academy Sciences in USA v.96 Distinctive gene expression patterns in human mammary epithelial cells and breast cancers Perou, C.M.;Jeffrey, S.S.;Rijn, M.V.;Rees, C.A.;Eisen, M.B.;Ross, D.T.;Pergamenschikov, A.;Wiliams, C.R.;Zhu, S.X.;Lee, J.C.F.;Lashkari, D.;Shalon, D.;Brown, P.O.;Botstein, D. https://doi.org/10.1073/pnas.96.16.9212
  16. Journal of the American Statistical in USA v.96 Objective criteria for the evaluation of clustering methods Rand, W.M. https://doi.org/10.1080/01621459.1971.10482356
  17. Molecular Biology of the Cell v.9 Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization Spellman, P.T.;Sherlock, G.;Zhang, M.Q.;Iyer, V.R.;Eisen, M.B.;Brown, P.O.;Botstein, D.;Futcher, B. https://doi.org/10.1091/mbc.9.12.3273
  18. Journal of Pathology v.195 Analysing gene expression data from DNA microarrays to identify candidate genes Wu, Thomas D. https://doi.org/10.1002/1096-9896(200109)195:1<53::AID-PATH891>3.0.CO;2-H