DOI QR코드

DOI QR Code

Study on Antioxidant Potency of Green Tea by DPPH Method

DPPH 방법을 통한 녹차의 항산화 활성에 대한 연구

  • 오중학 (제주대학교 식품영양학과) ;
  • 김은희 (제주대학교 식품영양학) ;
  • 김정례 (제주대학교 식품영양학) ;
  • 문영인 (제주도 북제주군 농협기술센) ;
  • 강영희 (한림대학교 생명과학부 식품영양전) ;
  • 강정숙 (제주대학교 식품영양학과)
  • Published : 2004.08.01

Abstract

The present study was conducted to compare antioxidant activity of green teas, fermented teas and other related common teas by examining radical scavenging activity using DPPH (2,2 diphenyl l-picryl hydrazyl). Scavenging activity ($SC_{50}$/) of epigallocatechin gallate (EGCG) for 0.1 mM DPPH radical was 5.5 $\mu$M or 4.2 mg/L by weight, then catechin, 14 $\mu$M or 2.5 mg/L and vitamin C, 22 $\mu$M or 3.9 mg/L, respectively. Kyokuro tea (okro) powder of 24.2 mg/L or green tea powder of 25.2 mg/L was used to reach $SC_{50}$/ for 0.1 mM DPPH. One serving of 2 g green tea provides antioxidant activity equivalent to 109∼147 mg EGCG, 145∼185 mg catechin or 131∼168 mg vitamin C. Teas from the first harvest had the highest radical scavenging activity when compared with later harvest green teas grown in the same region, but there is virtually no difference by the harvest time. A Chinese green tea, Dragon well had the highest antioxidant activity among other green teas tested providing antioxidant capacity equivalent to 168 mg EGCG or 188 mg vitamin C per 2 g serving, but partially fermented Chinese teas had much lower antioxidant activity than any green tea tested. Black tea which is fully fermented showed as strong antioxidant activity as green teas (76.3 mg vs 86.7∼67.6 mg per tea bag). One tea bag of green teas from market provided antioxidant capacity equivalent to 52∼86 mg EGCG, 70∼105 mg catechin or 63-96 mg vitamin C. Teas made of persimmon leaf, pine needle, mulberry leaf had comparatively low anti-oxidant activity equivalent to 2.5∼4.8 mg EGCG or 15∼21 mg vitamin C per teabag. The third brewed green tea still had enough antioxidant activity, while tea from tea bag brewed for 3 min or 5 min did not have any difference in their antioxidant activity. More systemic studies are needed to clarify the relationship between tea catechins and antioxidant capacity focusing on how growing, harvest time, fermentation and other processes can influence on this.

본 실험에서는 DPPH radical 소거능을 통하여 차잎의 수확시기 및 발효정도에 따른 항산화 활성에 있어서 변화를 비교하고 일상의 녹차 음용으로 섭취되는 항산화 물질을 EGCG 등의 함량으로 추정하고자 하였다. 우전과 같이 수확시기가 빠른 것이 다소 높은 항산화 활성을 보였고, 특히 볕가림 재배한 옥로가 일반 녹차에 비 해 적어도 비슷한 활성을 나타냈다. 중국의 반발효차에 있어서 발효정도에 따라 항산화 활성이 감소한데 비해 완전히 발효된 흥차의 경우 항산화 활성이 녹차의 수준으로 유지하였고, 이러한 홍차의 항산화 물질에 대해서는 보다 체계적 인 연구가 필요하리라 생각된다. 분량 2그램의 녹차를3회 우려 마시는 경우 이로부터 섭취할 수 있는 항산화 물질은 EGCG 기준으로 109∼147 mg정도이고 비타민 C로는 142∼168 mg에 해당한다. 시판되고 있는 녹차티백은 제품에 따라 다소 차이를 보였으나 한 티백으로부터 52∼86 mg정도의 EGCG에 해당하는 항산화 활성을 보였는데 비타민 C로는 63∼96 mg에 해당한다. 증열과정이 긴 냉녹차나 차잎의 분량이 적은 현미 녹차가 낮은 항산화 활성을 보였고, 감잎차, 뽕잎차, 솔잎차에서도 적으나마 항산화 활성이 보인 반면 식 물의 뿌리 인 둥굴레 차는 항산화 활성 이 거의 없다. 전통적 인 방법으로 차를 3회 우려 마시는 경우 차잎 속에 포함된 항산화 물질의 절반정도가 용출되는 셈인데 가능한 분말차로 사용되는 것이 경제적일 수 있다. 세번째 우린 찻물에도 상당량의 항산화 물질이 함유된 반떤, 녹차 티백의 경우 3분이면 충분한 항산화 물질이 용출되는 것을 알 수 있다. 식품 속의 플라보노이드가 섭취되어 실제로 어느 정도 흡수되는가에 대해서 아직 이견이 있고 플라보노이드의 임상적인 효과에 대해 확실하지 않으나 역학적인 근거로는 긍정적이다. 천연의 항산화 물질을 자연스럽게 섭취하는 방법으로서 차의 음용을 생활화하는 것은 퇴행성 또는 노화관련 질환의 예방차원에서 바람직하리라 본다.

Keywords

References

  1. Trevisanato SI, Kim YI. 2000. Tea and health. Nutr Review58: 1-10.
  2. Shin MK. 1994. Green tea science. Korean J Dietary Culture9: 433-445.
  3. Shibata K, Moriyama M, Fukushima T, Miyazaki M, UneH. 2000. Green tea consumption and chronic atrophic gastritis:a cross-sectional study in green tea protection village.J Epidemiol 10: 310-316. https://doi.org/10.2188/jea.10.310
  4. Chung FL, Schwartz J, Herzog CR, Yang YM. 2003. Tea and cancer prevention: studies in animals and humans. J Nutr 133: 3268S-3274S. https://doi.org/10.1093/jn/133.10.3268S
  5. Hodgson JM, Puddey IB, Burke V, Jordan N. 1999. Effectson blood pressure of drinking green and black tea. J Hypertens17: 457-463. https://doi.org/10.1097/00004872-199917040-00002
  6. van het Hof KH, Wiseman SA, Yang CS, Tijburg LB. 1999.Plasma and lipoprotein levels of tea catechins followingrepeated tea consumption. Proc Soc Exp Biol Med 220:203-209. https://doi.org/10.1046/j.1525-1373.1999.d01-34.x
  7. Kuttan R. 2002. Antidiabetic activity of green tea polyphenolsand their role in reducing oxidative stress in experimentaldiabetes. J Ethnopharmacol 83: 109-116. https://doi.org/10.1016/S0378-8741(02)00217-9
  8. Hodgson JM, Puddey IB, Burke V, Beilin LJ, Mori TA, ChanSY. 2002. Acute effects of ingestion of black tea on postprandialplatelet aggregation in human subjects. Br J Nutr87: 141-145. https://doi.org/10.1079/BJN2001499
  9. Feng Q, Torii Y, Uchida K, Nakamura Y, Hara Y, Osawa T. 2002. Black tea polyphenols, theaflavins, prevent cellular DNA damage by inhibiting oxidative stress and suppressing cytichrome p450 1A1 in cell culture. J Agric Food Chem 1: 213-220.
  10. Sarkar S, Sett P, Chowdhury T, Ganguly DK. 2000. Effect of black tea on teeth. J Indian Soc Pedod Prev Dent 18: 139-140.
  11. Kim JW, Shin GH, Kim JH, Lim YS, Han JS, Choi HK. 1996. The current status of tea cultivation in Korea. J Korean Tea Soc 2: 209-216.
  12. Macrae R, Robinson RK, Sadler MJ. 1993. Tea. In Encyclopediaof food science, food technology and nutrition. Academic Press, UK. p 4521-4542.
  13. Scarbert A, Williamson G. 2000. Dietary intake and bioavailability of polyphenols. J Nutr 130: 2073S-2085S. https://doi.org/10.1093/jn/130.8.2073S
  14. Nah HH, Baik SO, Han SB, Bok JY. 1992. Improvements in analysis of tea catechins by HPLC. J Korean Agric Chem 35: 276-280.
  15. Lee YJ, Ahn MS, Oh WT. 1998. A study on the catechin contents and antioxidative effect of various solvent extracts of green, oolong and black tea. J Food Hygiene Safety 13: 370-376
  16. Brand-Williams W, Cuvelier ME, Berset C. 1995. Use of a free radical method to evaluate antioxidant activity. Technology 28: 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  17. Choi SH, Lee BH, Choi HD. 1992. Analysis of catechincontents in commercial green tea by HPLC. J Korean SocFood Nutr 21: 386-389.
  18. Young JF, Nielsen SE, Haraldsdottir J, Daneshvar B, DragstadLO. 1999. Effect of fruit juice intake on urinaryquercetin excretion and biomarkers of antioxidative status.Am J Clin Nutr 69: 87-94. https://doi.org/10.1093/ajcn/69.1.87
  19. Rhodes MJC. 1996. Physiologically active compounds inplant foods: an overview. Proceedings Nutr Society 55:371-384. https://doi.org/10.1079/PNS19960036
  20. Lee JH, Kang YH, Kang JS. 2002. Free radical scavengingof flavonoids and their effects on erythrocyte Na leak,platelet aggregation and TBARS production. NutritionalScience 5: 197-202.

Cited by

  1. Physiochemical Characteristics and Antioxidant Activity of Soybean Curd Added with Saltwort (Salicornia herbacea L.) vol.29, pp.2, 2013, https://doi.org/10.9724/kfcs.2013.29.2.123
  2. Comparison of Fruit Quality and Antioxidant Compound of 'Niitaka' Pear Trees Grown in the Organically and Conventionally Managed Systems vol.29, pp.4, 2010, https://doi.org/10.5338/KJEA.2010.29.4.367
  3. Metabolic Profiling and Predicting the Free Radical Scavenging Activity of Guava (Psidium guajavaL.) Leaves According to Harvest Time by1H-Nuclear Magnetic Resonance Spectroscopy vol.75, pp.6, 2011, https://doi.org/10.1271/bbb.100908
  4. An Esr Study of Free Radicals Scavenging by Red Tea vol.19, pp.1, 2012, https://doi.org/10.2478/v10216-011-0005-z
  5. The Analysis of the Physiologic Activities of the Jeju Teas according to the Fermentational Degree vol.24, pp.2, 2011, https://doi.org/10.7732/kjpr.2011.24.2.236
  6. Characterization of Black Ginseng Extract with Acetyl- and Butyrylcholinesterase Inhibitory and Antioxidant Activities vol.34, pp.4, 2010, https://doi.org/10.5142/jgr.2010.34.4.348
  7. Quality Characteristics and Storage Stability of Bread with Cabbage Powder vol.28, pp.4, 2012, https://doi.org/10.9724/kfcs.2012.28.4.431
  8. The Antioxidant Activities of the Korean Variety Mung Bean Hull Extracts as Dependent on the Different Extraction Methods vol.28, pp.5, 2012, https://doi.org/10.9724/kfcs.2012.28.5.605
  9. Anti-oxidant activities of mung bean starch and starch gels prepared from whole and hulled seeds vol.25, pp.2, 2016, https://doi.org/10.1007/s10068-016-0062-2
  10. Quality Characteristics and Optimization of Bread with Mori Cortex Radicis Powder Using Response Surface Methodology vol.28, pp.5, 2013, https://doi.org/10.7318/KJFC/2013.28.5.512
  11. 가열처리 및 허브첨가에 의한 무취 마늘 소재 개발 vol.38, pp.1, 2009, https://doi.org/10.3746/jkfn.2009.38.1.105
  12. HPLC를 이용한 하동 녹차의 Catechin류, Alkaloid류 분석 및 항산화능 측정 vol.30, pp.4, 2004, https://doi.org/10.12925/jkocs.2013.30.4.761
  13. 유기농 살구, 개암, 오디, 감 및 석류나무 잎의 생육단계별 총 페놀화합물과 항산화 활성변화 vol.23, pp.4, 2004, https://doi.org/10.11625/kjoa.2015.23.4.999
  14. 젖산균 발효를 통한 녹차 추출물의 Epigallocatechin 함량의 증대 vol.44, pp.1, 2004, https://doi.org/10.4014/mbl.1511.11015
  15. 저장조건에 따른 녹차의 카테킨류, 테아닌의 변화 vol.22, pp.5, 2004, https://doi.org/10.20878/cshr.2016.22.5.020
  16. 초석잠 분말 첨가 국수의 품질 특성 및 항산화성 vol.27, pp.1, 2017, https://doi.org/10.17495/easdl.2017.2.27.1.61
  17. 짝잎모자반(Sargassum hemiphyllum) 추출물의 항산화 효과 vol.45, pp.2, 2004, https://doi.org/10.4014/mbl.1609.09001
  18. 지리산 지역 자생식물 활용 천연보존제 융합 연구 vol.8, pp.12, 2004, https://doi.org/10.15207/jkcs.2017.8.12.109
  19. 홍차박 추출물의 in vitro 항산화 활성 vol.62, pp.3, 2019, https://doi.org/10.3839/jabc.2019.038
  20. 두충나무(Eucommia ulmoides Oliver) 잎과 껍질의 에탄올 추출물의 항산화 활성 vol.63, pp.3, 2020, https://doi.org/10.3839/jabc.2020.035
  21. 증숙 더덕 에탄올 추출물에 대한 항산화·항균 활성 vol.34, pp.1, 2004, https://doi.org/10.9799/ksfan.2021.34.1.107